• logic, projective determinacy is the special case of the axiom of determinacy applying only to projective sets. The axiom of projective determinacy, abbreviated...
    3 KB (312 words) - 21:20, 11 May 2025
  • uniformization. AD+ Axiom of projective determinacy Topological game Ikegami, Daisuke; de Kloet, David; Löwe, Benedikt (2012-11-01). "The axiom of real Blackwell...
    2 KB (155 words) - 06:03, 17 June 2024
  • if it has a projective set as its winning set (see Projective determinacy). The axiom of determinacy implies that for every subspace X of the real numbers...
    19 KB (2,394 words) - 15:59, 2 April 2025
  • of determinacy Axiom of projective determinacy Martin's axiom Axiom of constructibility Rank-into-rank Kripke–Platek axioms Diamond principle Parallel...
    3 KB (270 words) - 21:03, 10 December 2024
  • then projective determinacy holds; that is, every game whose winning condition is a projective set is determined. From projective determinacy it follows...
    30 KB (4,126 words) - 20:53, 17 February 2025
  • ordinal determinacy. Axiom of projective determinacy Axiom of real determinacy Suslin's problem Topological game Woodin, W. Hugh (1999). The axiom of determinacy...
    1 KB (137 words) - 04:17, 24 June 2024
  • Ω-logic (category Systems of formal logic)
    Just as the axiom of projective determinacy yields a canonical theory of H ℵ 1 {\displaystyle H_{\aleph _{1}}} , he sought to find axioms that would give...
    6 KB (728 words) - 16:21, 21 April 2025
  • Borel determinacy are studied in descriptive set theory. They are closely related to large cardinal axioms. The axiom of projective determinacy states...
    14 KB (2,061 words) - 03:59, 24 March 2025
  • Thumbnail for Set theory
    study of inner models is common in the study of determinacy and large cardinals, especially when considering axioms such as the axiom of determinacy that...
    54 KB (6,575 words) - 12:01, 1 May 2025
  • Prewellordering Projective set Property of Baire Uniformization (set theory) Universally measurable set Determinacy AD+ Axiom of determinacy Axiom of projective determinacy...
    14 KB (1,012 words) - 00:08, 16 November 2024
  • Antimicrobial Photodynamic Therapy Point-defence, a category of weapons Axiom of projective determinacy, in mathematical logic Pumpe Düse, a Volkswagen Group...
    6 KB (785 words) - 17:28, 30 January 2025
  • Prewellordering Projective set Property of Baire Uniformization (set theory) Universally measurable set Determinacy AD+ Axiom of determinacy Axiom of projective determinacy...
    5 KB (448 words) - 01:47, 13 February 2025
  • Thumbnail for Fallibilism
    Fallibilism (category Philosophy of science)
    that new axioms, for example the axiom of projective determinacy, might improve ZFC, but that these axioms will not allow for dependence of the continuum...
    26 KB (2,886 words) - 16:39, 13 April 2025
  • addition of axioms such as Martin's axiom or large cardinal axioms to ZFC. Some others are decided in ZF+AD where AD is the axiom of determinacy, a strong...
    46 KB (6,252 words) - 14:45, 16 April 2025
  • set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any...
    21 KB (3,513 words) - 20:47, 17 February 2025
  • Second-order arithmetic (category Formal theories of arithmetic)
    projective determinacy[citation needed], that is a statement in the language of second-order arithmetic is provable in Z2 with projective determinacy...
    29 KB (3,837 words) - 20:26, 1 April 2025
  • Thumbnail for Axiom of choice
    the axiom of choice.) Every free abelian group is projective. Baer's criterion: Every divisible abelian group is injective. Every set is a projective object...
    59 KB (7,917 words) - 15:47, 15 May 2025
  • N. Briefly, every set is determined by its elements." AXIOM II. Axiom of elementary sets (Axiom der Elementarmengen) "There exists a set, the null set...
    15 KB (2,239 words) - 02:36, 15 January 2025
  • In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty...
    24 KB (2,938 words) - 00:23, 30 January 2025
  • of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at...
    11 KB (1,808 words) - 01:42, 12 May 2025
  • abstraction Axiom of choice Axiom of comprehension Axiom of Equity Axiom of extensionality Axiom of infinity Axiom of projective determinacy Axiom of reducibility...
    72 KB (6,890 words) - 23:23, 6 May 2025
  • of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation (Aussonderungsaxiom), subset axiom, axiom of...
    15 KB (2,207 words) - 05:19, 24 March 2025
  • implies that the axiom of determinacy holds in L(R) and is believed to imply the existence of an inner model with a superstrong cardinal. List of statements...
    6 KB (781 words) - 23:04, 4 December 2024
  • The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written...
    8 KB (1,064 words) - 09:57, 4 February 2025
  • The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory...
    14 KB (1,879 words) - 03:28, 19 April 2025
  • Thumbnail for Axiom of power set
    the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set x {\displaystyle x} the existence of a...
    4 KB (633 words) - 21:31, 22 March 2024
  • epistemic status below). A large cardinal axiom is an axiom stating that there exists a cardinal (or perhaps many of them) with some specified large cardinal...
    10 KB (1,337 words) - 20:26, 1 April 2025
  • theory, the axiom of union is one of the axioms of Zermelo–Fraenkel set theory. This axiom was introduced by Ernst Zermelo. Informally, the axiom states that...
    4 KB (688 words) - 08:00, 5 March 2025
  • Thumbnail for Axiom of countable choice
    The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty...
    10 KB (1,259 words) - 14:17, 15 March 2025
  • an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. An axiom schema is a formula in the metalanguage of an axiomatic...
    4 KB (470 words) - 13:47, 21 November 2024