• Thumbnail for Dirichlet eta function
    in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number...
    19 KB (3,708 words) - 05:31, 18 April 2025
  • eta function may refer to: The Dirichlet eta function η(s), a Dirichlet series The Dedekind eta function η(τ), a modular form The Weierstrass eta function...
    314 bytes (78 words) - 19:25, 1 September 2016
  • Thumbnail for Dirichlet beta function
    mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a...
    8 KB (1,427 words) - 00:29, 9 February 2025
  • Weierstrass eta function should not be confused with either the Dedekind eta function or the Dirichlet eta function. The Weierstrass p-function is related...
    6 KB (1,083 words) - 00:26, 25 March 2025
  • ]}{\biggr \}}_{y=0}^{y=1}}={\frac {\pi }{2}}\ln(2)} The Dirichlet series defines the Dirichlet eta function as follows: η ( s ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n s...
    41 KB (7,862 words) - 10:05, 13 April 2025
  • in lambda calculus. Mathematics, the Dirichlet eta function, Dedekind eta function, and Weierstrass eta function. In category theory, the unit of an adjunction...
    15 KB (1,783 words) - 23:19, 30 March 2025
  • Synchrotron function Riemann zeta function: A special case of Dirichlet series. Riemann Xi function Dirichlet eta function: An allied function. Dirichlet beta...
    10 KB (1,065 words) - 21:59, 6 March 2025
  • In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane...
    17 KB (3,057 words) - 13:16, 29 April 2025
  • Thumbnail for Clausen function
    tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function. The Clausen function of order 2 – often referred...
    31 KB (6,482 words) - 03:37, 7 March 2025
  • Thumbnail for Riemann zeta function
    zeta function Dirichlet eta function Generalized Riemann hypothesis Lehmer pair Particular values of the Riemann zeta function Prime zeta function Renormalization...
    74 KB (10,674 words) - 01:04, 20 April 2025
  • Thumbnail for Dirichlet distribution
    In probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted Dir ⁡ ( α ) {\displaystyle \operatorname...
    43 KB (6,706 words) - 12:43, 24 April 2025
  • Approvals Dedekind eta function Dirichlet eta function Eta conversion Eta invariant Weierstrass eta function The small letter eta is used as 't Hooft...
    3 KB (421 words) - 10:34, 7 September 2024
  • Thumbnail for 1 − 2 + 3 − 4 + ⋯
    functional equations of what are now known as the Dirichlet eta function and the Riemann zeta function. The series' terms (1, −2, 3, −4, ...) do not approach...
    26 KB (3,577 words) - 04:34, 24 April 2025
  • Thumbnail for 1 + 2 + 3 + 4 + ⋯
    between the Riemann zeta function and the Dirichlet eta function η(s). The eta function is defined by an alternating Dirichlet series, so this method parallels...
    33 KB (4,221 words) - 00:44, 6 February 2025
  • Thumbnail for Dirac delta function
    Fourier series states that the Dirichlet kernel restricted to the interval [−π,π] tends to a multiple of the delta function as N → ∞. This is interpreted...
    96 KB (14,231 words) - 04:12, 23 April 2025
  • Thumbnail for Polylogarithm
    related to Dirichlet eta function and the Dirichlet beta function: Li s ⁡ ( − 1 ) = − η ( s ) , {\displaystyle \operatorname {Li} _{s}(-1)=-\eta (s),} where...
    60 KB (10,139 words) - 16:24, 15 April 2025
  • Thumbnail for Riemann hypothesis
    Riemann hypothesis (category Zeta and L-functions)
    this continuation observes that the series for the zeta function and the Dirichlet eta function satisfy the relation ( 1 − 2 2 s ) ζ ( s ) = η ( s ) =...
    127 KB (16,757 words) - 10:06, 30 April 2025
  • a complex-valued arithmetic function χ : Z → C {\displaystyle \chi :\mathbb {Z} \rightarrow \mathbb {C} } is a Dirichlet character of modulus m {\displaystyle...
    51 KB (11,844 words) - 03:37, 21 April 2025
  • Complete Fermi–Dirac integral (category Special functions)
    {\displaystyle F_{j}(0)=\eta (j+1),} where η {\displaystyle \eta } is the Dirichlet eta function. Incomplete Fermi–Dirac integral Gamma function Polylogarithm Gradshteyn...
    3 KB (350 words) - 03:34, 15 March 2025
  • Thumbnail for Ramanujan tau function
    {\displaystyle \phi } is the Euler function, η {\displaystyle \eta } is the Dedekind eta function, and the function Δ ( z ) {\displaystyle \Delta (z)}...
    12 KB (1,948 words) - 15:11, 2 April 2025
  • Euler summation to the zeta function (or rather, to the related Dirichlet eta function) yields (cf. Globally convergent series) 1 1 − 2 k + 1 ∑ i = 0 k...
    4 KB (750 words) - 21:16, 14 April 2025
  • Thumbnail for Theta function
    1 , {\displaystyle \tau =n{\sqrt {-1}},} and Dedekind eta function η ( τ ) . {\displaystyle \eta (\tau ).} Then for n = 1 , 2 , 3 , … {\displaystyle n=1...
    70 KB (14,659 words) - 05:56, 16 April 2025
  • Thumbnail for Weierstrass elliptic function
    24 {\displaystyle \Delta =(2\pi )^{12}\eta ^{24}} where η {\displaystyle \eta } is the Dedekind eta function. For the Fourier coefficients of Δ {\displaystyle...
    25 KB (4,549 words) - 14:26, 25 March 2025
  • generalization of the Dirichlet eta function. They also later used the eta invariant of a self-adjoint operator to define the eta invariant of a compact...
    3 KB (343 words) - 06:43, 26 February 2025
  • Thumbnail for Edmund Landau
    Landau–Kolmogorov inequality Landau–Ramanujan constant Landau's problem on the Dirichlet eta function Landau kernel Endmund Landau (1895). "Zur relativen Wertbemessung...
    8 KB (763 words) - 20:13, 15 February 2025
  • distribution Dirichlet divisor problem (currently unsolved) (Number theory) Dirichlet eigenvalue Dirichlet's ellipsoidal problem Dirichlet eta function (number...
    3 KB (224 words) - 16:08, 20 March 2022
  • {x}{2}}\right)}^{2m+\alpha }} where Γ(z) is the gamma function. If s is a complex number, the Dirichlet eta function is formed as an alternating series η ( s ) =...
    10 KB (1,761 words) - 21:16, 14 April 2025
  • {1}{n^{s}}}=\Phi (1,s,1)} The Dirichlet eta function: η ( s ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n s = Φ ( − 1 , s , 1 ) {\displaystyle \eta (s)=\sum _{n=1}^{\infty...
    17 KB (3,654 words) - 10:03, 9 January 2025
  • transform (in which he gave a first solution to Landau's problem on the Dirichlet eta function), An introduction to transform theory, and The convolution transform...
    3 KB (236 words) - 03:15, 12 December 2023
  • developed an algorithm that applies Chebyshev polynomials to the Dirichlet eta function to produce a very rapidly convergent series suitable for high precision...
    8 KB (782 words) - 02:03, 12 November 2024