in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number...
19 KB (3,708 words) - 05:31, 18 April 2025
eta function may refer to: The Dirichlet eta function η(s), a Dirichlet series The Dedekind eta function η(τ), a modular form The Weierstrass eta function...
314 bytes (78 words) - 19:25, 1 September 2016
mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a...
8 KB (1,427 words) - 00:29, 9 February 2025
Weierstrass eta function should not be confused with either the Dedekind eta function or the Dirichlet eta function. The Weierstrass p-function is related...
6 KB (1,083 words) - 00:26, 25 March 2025
Fubini's theorem (section Dirichlet eta Function)
]}{\biggr \}}_{y=0}^{y=1}}={\frac {\pi }{2}}\ln(2)} The Dirichlet series defines the Dirichlet eta function as follows: η ( s ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n s...
41 KB (7,862 words) - 10:05, 13 April 2025
in lambda calculus. Mathematics, the Dirichlet eta function, Dedekind eta function, and Weierstrass eta function. In category theory, the unit of an adjunction...
15 KB (1,783 words) - 23:19, 30 March 2025
Synchrotron function Riemann zeta function: A special case of Dirichlet series. Riemann Xi function Dirichlet eta function: An allied function. Dirichlet beta...
10 KB (1,065 words) - 21:59, 6 March 2025
In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane...
17 KB (3,057 words) - 13:16, 29 April 2025
tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function. The Clausen function of order 2 – often referred...
31 KB (6,482 words) - 03:37, 7 March 2025
zeta function Dirichlet eta function Generalized Riemann hypothesis Lehmer pair Particular values of the Riemann zeta function Prime zeta function Renormalization...
74 KB (10,674 words) - 01:04, 20 April 2025
In probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted Dir ( α ) {\displaystyle \operatorname...
43 KB (6,706 words) - 12:43, 24 April 2025
Approvals Dedekind eta function Dirichlet eta function Eta conversion Eta invariant Weierstrass eta function The small letter eta is used as 't Hooft...
3 KB (421 words) - 10:34, 7 September 2024
functional equations of what are now known as the Dirichlet eta function and the Riemann zeta function. The series' terms (1, −2, 3, −4, ...) do not approach...
26 KB (3,577 words) - 04:34, 24 April 2025
between the Riemann zeta function and the Dirichlet eta function η(s). The eta function is defined by an alternating Dirichlet series, so this method parallels...
33 KB (4,221 words) - 00:44, 6 February 2025
Fourier series states that the Dirichlet kernel restricted to the interval [−π,π] tends to a multiple of the delta function as N → ∞. This is interpreted...
96 KB (14,231 words) - 04:12, 23 April 2025
Polylogarithm (redirect from De Jonquière's function)
related to Dirichlet eta function and the Dirichlet beta function: Li s ( − 1 ) = − η ( s ) , {\displaystyle \operatorname {Li} _{s}(-1)=-\eta (s),} where...
60 KB (10,139 words) - 16:24, 15 April 2025
Riemann hypothesis (category Zeta and L-functions)
this continuation observes that the series for the zeta function and the Dirichlet eta function satisfy the relation ( 1 − 2 2 s ) ζ ( s ) = η ( s ) =...
127 KB (16,757 words) - 10:06, 30 April 2025
a complex-valued arithmetic function χ : Z → C {\displaystyle \chi :\mathbb {Z} \rightarrow \mathbb {C} } is a Dirichlet character of modulus m {\displaystyle...
51 KB (11,844 words) - 03:37, 21 April 2025
Complete Fermi–Dirac integral (category Special functions)
{\displaystyle F_{j}(0)=\eta (j+1),} where η {\displaystyle \eta } is the Dirichlet eta function. Incomplete Fermi–Dirac integral Gamma function Polylogarithm Gradshteyn...
3 KB (350 words) - 03:34, 15 March 2025
{\displaystyle \phi } is the Euler function, η {\displaystyle \eta } is the Dedekind eta function, and the function Δ ( z ) {\displaystyle \Delta (z)}...
12 KB (1,948 words) - 15:11, 2 April 2025
Euler summation to the zeta function (or rather, to the related Dirichlet eta function) yields (cf. Globally convergent series) 1 1 − 2 k + 1 ∑ i = 0 k...
4 KB (750 words) - 21:16, 14 April 2025
1 , {\displaystyle \tau =n{\sqrt {-1}},} and Dedekind eta function η ( τ ) . {\displaystyle \eta (\tau ).} Then for n = 1 , 2 , 3 , … {\displaystyle n=1...
70 KB (14,659 words) - 05:56, 16 April 2025
24 {\displaystyle \Delta =(2\pi )^{12}\eta ^{24}} where η {\displaystyle \eta } is the Dedekind eta function. For the Fourier coefficients of Δ {\displaystyle...
25 KB (4,549 words) - 14:26, 25 March 2025
generalization of the Dirichlet eta function. They also later used the eta invariant of a self-adjoint operator to define the eta invariant of a compact...
3 KB (343 words) - 06:43, 26 February 2025
Landau–Kolmogorov inequality Landau–Ramanujan constant Landau's problem on the Dirichlet eta function Landau kernel Endmund Landau (1895). "Zur relativen Wertbemessung...
8 KB (763 words) - 20:13, 15 February 2025
distribution Dirichlet divisor problem (currently unsolved) (Number theory) Dirichlet eigenvalue Dirichlet's ellipsoidal problem Dirichlet eta function (number...
3 KB (224 words) - 16:08, 20 March 2022
{x}{2}}\right)}^{2m+\alpha }} where Γ(z) is the gamma function. If s is a complex number, the Dirichlet eta function is formed as an alternating series η ( s ) =...
10 KB (1,761 words) - 21:16, 14 April 2025
Lerch transcendent (redirect from Hurwitz-Lerch zeta function)
{1}{n^{s}}}=\Phi (1,s,1)} The Dirichlet eta function: η ( s ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n s = Φ ( − 1 , s , 1 ) {\displaystyle \eta (s)=\sum _{n=1}^{\infty...
17 KB (3,654 words) - 10:03, 9 January 2025
transform (in which he gave a first solution to Landau's problem on the Dirichlet eta function), An introduction to transform theory, and The convolution transform...
3 KB (236 words) - 03:15, 12 December 2023
developed an algorithm that applies Chebyshev polynomials to the Dirichlet eta function to produce a very rapidly convergent series suitable for high precision...
8 KB (782 words) - 02:03, 12 November 2024