In number theory, a pseudoprime is called an elliptic pseudoprime for (E, P), where E is an elliptic curve defined over the field of rational numbers with...
1 KB (158 words) - 22:13, 12 December 2024
pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime Lucas pseudoprime Perrin pseudoprime Somer–Lucas...
3 KB (357 words) - 00:52, 22 February 2025
In mathematics, an odd composite integer n is called an Euler pseudoprime to base a, if a and n are coprime, and a ( n − 1 ) / 2 ≡ ± 1 ( mod n ) {\displaystyle...
9 KB (547 words) - 13:30, 16 November 2024
composites also pass, making them "pseudoprimes". Unlike the Fermat pseudoprimes, for which there exist numbers that are pseudoprimes to all coprime bases (the...
10 KB (1,336 words) - 13:24, 16 November 2024
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in...
25 KB (3,584 words) - 19:38, 28 April 2025
Carmichael number (redirect from Absolute pseudoprime)
However, no Carmichael number is either an Euler–Jacobi pseudoprime or a strong pseudoprime to every base relatively prime to it so, in theory, either...
28 KB (3,602 words) - 19:26, 10 April 2025
In number theory, a Frobenius pseudoprime is a pseudoprime, whose definition was inspired by the quadratic Frobenius test described by Jon Grantham in...
15 KB (2,201 words) - 21:55, 16 April 2025
certainly composite. A composite number that passes such a test is called a pseudoprime. In contrast, some other algorithms guarantee that their answer will...
117 KB (14,179 words) - 16:20, 4 May 2025
In mathematics, a Catalan pseudoprime is an odd composite number n satisfying the congruence ( − 1 ) n − 1 2 ⋅ C n − 1 2 ≡ 2 ( mod n ) , {\displaystyle...
1 KB (139 words) - 20:46, 4 April 2025
above congruence, then n is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base a. As long as a is not a multiple of n (usually...
4 KB (440 words) - 13:27, 16 November 2024
specifically number theory, an odd and composite number N is a Somer–Lucas d-pseudoprime (with given d ≥ 1) if there exists a nondegenerate Lucas sequence U (...
2 KB (262 words) - 20:44, 12 December 2024
Perrin number (redirect from Perrin pseudoprime)
restricted Perrin pseudoprimes. There are only nine such numbers below 109. While Perrin pseudoprimes are rare, they overlap with Fermat pseudoprimes. Of the above...
23 KB (3,614 words) - 15:33, 28 March 2025
If n is composite and satisfies the formula, then n is a Fibonacci pseudoprime. When m is large – say a 500-bit number – then we can calculate Fm (mod...
86 KB (13,066 words) - 15:37, 16 May 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
25 KB (3,543 words) - 19:42, 14 May 2025
Congruent number (category Elliptic curves)
on this elliptic curve are those with y equal to 0, hence the existence of a rational point with y nonzero is equivalent to saying the elliptic curve has...
18 KB (1,964 words) - 03:18, 13 May 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
8 KB (658 words) - 15:26, 20 May 2025
All composite divisors of prime-exponent Mersenne numbers are strong pseudoprimes to the base 2. With the exception of 1, a Mersenne number cannot be a...
71 KB (6,408 words) - 06:29, 20 May 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
5 KB (447 words) - 21:34, 19 May 2025
In number theory, a super-Poulet number is a Poulet number, or pseudoprime to base 2, whose every divisor d {\displaystyle d} divides 2 d − 2 {\displaystyle...
2 KB (269 words) - 17:01, 28 April 2025
In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem. Fermat's little theorem...
35 KB (2,280 words) - 17:02, 28 April 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
6 KB (866 words) - 18:13, 3 March 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
24 KB (3,032 words) - 16:41, 16 May 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
5 KB (730 words) - 19:47, 12 December 2024
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
104 KB (13,629 words) - 04:15, 13 May 2025
Fermat number (section Pseudoprimes and Fermat numbers)
Fermat number is a strong pseudoprime to base 2. This is because all strong pseudoprimes to base 2 are also Fermat pseudoprimes – i.e., 2 F n − 1 ≡ 1 (...
46 KB (4,717 words) - 14:50, 21 April 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
8 KB (787 words) - 10:47, 24 December 2024
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
8 KB (1,067 words) - 23:33, 11 May 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
6 KB (851 words) - 21:28, 27 March 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
9 KB (894 words) - 16:52, 3 March 2025
Pseudoprimes Carmichael number Catalan pseudoprime Elliptic pseudoprime Euler pseudoprime Euler–Jacobi pseudoprime Fermat pseudoprime Frobenius pseudoprime...
18 KB (2,540 words) - 19:34, 10 February 2025