• Unfolding (MVU), also known as Semidefinite Embedding (SDE), is an algorithm in computer science that uses semidefinite programming to perform non-linear...
    9 KB (1,572 words) - 18:57, 8 March 2025
  • Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified...
    28 KB (4,698 words) - 23:24, 19 June 2025
  • Thumbnail for Nonlinear dimensionality reduction
    a semidefinite programming problem. Unfortunately, semidefinite programming solvers have a high computational cost. Like Locally Linear Embedding, it...
    48 KB (6,119 words) - 04:01, 2 June 2025
  • Random projection Sammon mapping Semantic mapping (statistics) Semidefinite embedding Singular value decomposition Sufficient dimension reduction Topological...
    21 KB (2,248 words) - 07:14, 18 April 2025
  • Thumbnail for Isometry
    that an order embedding between partially ordered sets is injective. Clearly, every isometry between metric spaces is a topological embedding. A global isometry...
    18 KB (2,425 words) - 20:31, 9 April 2025
  • Cayley–Menger determinant Semidefinite embedding Dokmanic et al. (2015) So (2007) Maehara, Hiroshi (2013). "Euclidean embeddings of finite metric spaces"...
    17 KB (2,448 words) - 07:00, 17 June 2025
  • Definitizable Functions, Akademie Verlag, 1994 Wells, J. H.; Williams, L. R. Embeddings and extensions in analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete...
    7 KB (1,175 words) - 07:16, 11 October 2024
  • Self-Service Semantic Suite Semantic folding Semantic mapping (statistics) Semidefinite embedding Sense Networks Sensorium Project Sequence labeling Sequential minimal...
    39 KB (3,386 words) - 19:51, 2 June 2025
  • definition of an inner product. The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors...
    16 KB (3,167 words) - 12:03, 18 April 2025
  • (-1)^{k+1}\operatorname {CM} (P_{0},\ldots ,P_{k})\geq 0,} then such an embedding exists. Further, such embedding is unique up to isometry in R n {\displaystyle \mathbb...
    19 KB (3,316 words) - 06:13, 27 January 2024
  • relatedness Semantic similarity Semi-Markov process Semi-log graph Semidefinite embedding Semimartingale Semiparametric model Semiparametric regression Semivariance...
    87 KB (8,280 words) - 23:04, 12 March 2025
  • Thumbnail for Isomap
    widely used low-dimensional embedding methods. Isomap is used for computing a quasi-isometric, low-dimensional embedding of a set of high-dimensional...
    7 KB (913 words) - 18:30, 7 April 2025
  • and hence is convex. The second-order cone can be embedded in the cone of the positive semidefinite matrices since | | x | | ≤ t ⇔ [ t I x x T t ] ≽ 0...
    10 KB (1,417 words) - 01:14, 24 May 2025
  • embedded manifold in some C n {\displaystyle \mathbb {C} ^{n}} . Thus not only are we embedding the manifold, but we also demand for global embedding...
    36 KB (5,630 words) - 14:42, 16 June 2025
  • (denatured protein), in biochemistry Maximum variance unfolding (semidefinite embedding), in computer science Unfold (Marié Digby album), 2008 Unfold (John...
    1 KB (133 words) - 19:35, 24 November 2024
  • guarantees, one way is to formulate the problems as a semidefinite program (SDP), by embedding the problem in a higher dimensional space using the transformation...
    17 KB (2,898 words) - 05:06, 28 May 2025
  • parameters can be defined and studied, such as the minimum rank, minimum semidefinite rank and minimum skew rank. van der Holst, Lovász & Schrijver (1999)...
    10 KB (1,089 words) - 04:14, 25 September 2024
  • been shown to be equivalent to Connes' embedding problem, so the same proof also implies that the Connes embedding problem is false. Quantum nonlocality...
    14 KB (2,153 words) - 01:51, 26 May 2025
  • it can be approximated to within a constant approximation ratio using semidefinite programming. Note that min-cut and max-cut are not dual problems in the...
    10 KB (1,132 words) - 00:50, 30 August 2024
  • holds: − ω {\displaystyle -\omega } is the imaginary part of a positive semidefinite (respectively, positive definite) Hermitian form. For some basis d z...
    5 KB (719 words) - 14:35, 29 June 2024
  • show that this sesquilinear form is in fact positive semidefinite. Since positive semidefinite Hermitian sesquilinear forms satisfy the Cauchy–Schwarz...
    12 KB (2,113 words) - 06:14, 30 June 2023
  • Thumbnail for JuMP
    features. JuMP supports linear programming, mixed integer programming, semidefinite programming, conic optimization, nonlinear programming, and other classes...
    6 KB (399 words) - 20:29, 6 February 2025
  • graphs. He proved with his coauthors essentially that a huge class of semidefinite programming algorithms for the famous vertex cover problem will not achieve...
    4 KB (312 words) - 09:54, 15 March 2025
  • vertices of the embedding are required to be on the line, which is called the spine of the embedding, and the edges of the embedding are required to lie...
    109 KB (16,011 words) - 18:32, 30 April 2025
  • polar decomposition A = UP with a unitary matrix U and some positive semidefinite matrix P. A commutes with some normal matrix N with distinct[clarification...
    13 KB (1,665 words) - 01:24, 23 May 2025
  • boxes is equivalent to characterizing the cone of completely positive semidefinite matrices under a set of linear constraints. For small fixed dimensions...
    65 KB (9,397 words) - 18:11, 18 June 2025
  • following. Linear programming relaxations Semidefinite programming relaxations Primal-dual methods Dual fitting Embedding the problem in some metric and then...
    23 KB (3,126 words) - 12:31, 25 April 2025
  • Thumbnail for Bloch sphere
    {1}{2}}\left(1\pm |{\vec {a}}|\right)} . Density operators must be positive-semidefinite, so it follows that | a → | ≤ 1 {\displaystyle \left|{\vec {a}}\right|\leq...
    23 KB (3,793 words) - 03:17, 2 May 2025
  • solve graph homomorphism inequalities with computers by reducing them to semidefinite programming problems. Originally introduced by Alexander Razborov in...
    20 KB (3,883 words) - 05:00, 14 June 2024
  • Thumbnail for Graph coloring
    with a strong embedding on a surface, the face coloring is the dual of the vertex coloring problem. For a graph G with a strong embedding on an orientable...
    70 KB (8,459 words) - 05:58, 16 May 2025