• In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech...
    17 KB (3,654 words) - 17:40, 28 May 2025
  • Thumbnail for Riemann zeta function
    Cls(θ) can be chosen as the real or imaginary part of Lis(eiθ). The Lerch transcendent is given by Φ ( z , s , q ) = ∑ k = 0 ∞ z k ( k + q ) s {\displaystyle...
    74 KB (10,699 words) - 08:13, 30 June 2025
  • Dirichlet L-function Hurwitz zeta function Legendre chi function Lerch transcendent Polylogarithm and related functions: Incomplete polylogarithm Clausen...
    10 KB (1,065 words) - 15:31, 16 June 2025
  • Thumbnail for Polylogarithm
    terms of the other — and both functions are special cases of the Lerch transcendent. Polylogarithms should not be confused with polylogarithmic functions...
    60 KB (10,143 words) - 15:45, 2 June 2025
  • coach Gustov C. Lerch House Lerch Bates Lerch transcendent Lorch (disambiguation) Blub This page lists people with the surname Lerch. If an internal link...
    931 bytes (153 words) - 10:23, 13 January 2025
  • The inverse tangent integral can also be written in terms of the Lerch transcendent Φ ( z , s , a ) = ∑ n = 0 ∞ z n ( n + a ) s : {\textstyle \Phi (z...
    5 KB (911 words) - 19:39, 12 February 2024
  • those articles. The Legendre chi function is a special case of the Lerch transcendent, and is given by χ ν ( z ) = 2 − ν z Φ ( z 2 , ν , 1 / 2 ) . {\displaystyle...
    3 KB (566 words) - 10:44, 15 June 2025
  • Thumbnail for Meijer G-function
    Kν are the corresponding modified Bessel functions, and Φ is the Lerch transcendent. Gradshteyn and Ryzhik Andrews, L. C. (1985). Special Functions for...
    49 KB (10,023 words) - 12:56, 16 June 2025
  • Thumbnail for Bernoulli polynomials
    products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math.NT/0506319....
    19 KB (4,342 words) - 18:27, 2 June 2025
  • Thumbnail for Polygamma function
    }{(k+z)^{n+1}}}\right)} Where δn0 is the Kronecker delta. Also the Lerch transcendent Φ ( − 1 , m + 1 , z ) = ∑ k = 0 ∞ ( − 1 ) k ( z + k ) m + 1 {\displaystyle...
    12 KB (2,386 words) - 23:18, 13 January 2025
  • Thumbnail for Hurwitz zeta function
    The Barnes zeta function generalizes the Hurwitz zeta function. The Lerch transcendent generalizes the Hurwitz zeta: Φ ( z , s , q ) = ∑ k = 0 ∞ z k ( k...
    22 KB (4,190 words) - 19:25, 30 March 2025
  • Thumbnail for Dirichlet beta function
    4}\right)\right).} Another equivalent definition, in terms of the Lerch transcendent, is: β ( s ) = 2 − s Φ ( − 1 , s , 1 2 ) , {\displaystyle \beta (s)=2^{-s}\Phi...
    8 KB (1,427 words) - 11:45, 24 June 2025
  • Thumbnail for Catalan's constant
    {1+{\sqrt {2}}}{2\left(2-{\sqrt {2}}\right)}}\right).} If one defines the Lerch transcendent Φ(z,s,α) by Φ ( z , s , α ) = ∑ n = 0 ∞ z n ( n + α ) s , {\displaystyle...
    26 KB (3,488 words) - 03:23, 5 May 2025
  • and Sondow give a representation in terms of the derivative of the Lerch transcendent Φ ( z , s , q ) {\displaystyle \Phi (z,s,q)} : ln ⁡ σ = − 1 2 ∂ Φ...
    9 KB (1,566 words) - 13:30, 24 June 2025
  • Thumbnail for List of representations of e
    products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan Journal 16 (2008), 247–270. H. J. Brothers and J. A. Knox...
    13 KB (2,409 words) - 15:47, 26 June 2025
  • and generalizations. Further generalization comes from use of the Lerch transcendent: ∑ x z x ( x + a ) s = − z x Φ ( z , s , x + a ) + C {\displaystyle...
    14 KB (2,767 words) - 00:57, 31 January 2025
  • Thumbnail for Wrapped asymmetric Laplace distribution
    }}z=1\end{cases}}\end{aligned}}} where Φ ( ) {\displaystyle \Phi ()} is the Lerch transcendent function and coth() is the hyperbolic cotangent function. In terms...
    7 KB (1,197 words) - 17:14, 10 June 2025
  • ^{2}}}-{\frac {13}{4}}} A {\displaystyle A} also is related to the Lerch transcendent: ∂ Φ ∂ s ( − 1 , − 1 , 1 ) = 3 ln ⁡ A − 1 3 ln ⁡ 2 − 1 4 {\displaystyle...
    15 KB (2,969 words) - 11:44, 11 May 2025
  • Thumbnail for Wrapped exponential distribution
    }}z=1\end{cases}}\end{aligned}}} where Φ ( ) {\displaystyle \Phi ()} is the Lerch transcendent function. In terms of the circular variable z = e i θ {\displaystyle...
    5 KB (583 words) - 16:52, 10 March 2024
  • products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math/0506319. doi:10...
    97 KB (3,567 words) - 15:15, 27 June 2025
  • transformations defined above is related to more Hurwitz-zeta-like, or Lerch-transcendent-like, generating functions. Specifically, if we define the even more...
    62 KB (11,140 words) - 06:58, 19 March 2025