• theory, an inverse semigroup (occasionally called an inversion semigroup) S is a semigroup in which every element x in S has a unique inverse y in S in...
    28 KB (3,739 words) - 15:04, 23 March 2025
  • an inverse semigroup, called the symmetric inverse semigroup (actually a monoid) on X. The conventional notation for the symmetric inverse semigroup on...
    3 KB (306 words) - 02:48, 20 April 2024
  • Thumbnail for Symmetric group
    Signed symmetric group and Generalized symmetric group Symmetry in quantum mechanics § Exchange symmetry Symmetric inverse semigroup Symmetric power Jacobson...
    46 KB (6,212 words) - 15:23, 13 February 2025
  • implies the existence of a unique inverse, but the opposite is not true. For example, in the symmetric inverse semigroup, the empty transformation Ø does...
    11 KB (1,381 words) - 15:30, 16 April 2025
  • : 81  Semiautomaton Krohn–Rhodes theory Symmetric inverse semigroup Biordered set Special classes of semigroups Composition ring Dominique Perrin; Jean...
    8 KB (1,052 words) - 16:04, 11 December 2024
  • mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying...
    35 KB (428 words) - 13:11, 9 April 2023
  • group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with...
    26 KB (3,615 words) - 04:02, 27 April 2025
  • Thumbnail for Bijection
    Bijection (section Inverses)
    all partial bijections on a given base set is called the symmetric inverse semigroup. Another way of defining the same notion is to say that a partial...
    19 KB (2,509 words) - 18:58, 23 March 2025
  • X^{-1}})^{+}} we obtain a presentation (for an inverse semigroup) ( X ; T ) {\displaystyle (X;T)} and an inverse semigroup I n v ⟨ X | T ⟩ {\displaystyle \mathrm...
    5 KB (785 words) - 00:31, 4 March 2025
  • Representation theory of the symmetric group Schreier vector Strong generating set Symmetric group Symmetric inverse semigroup Weak order of permutations...
    4 KB (282 words) - 11:52, 17 July 2024
  • inverse may be defined on a *-regular semigroup. This abstract definition coincides with the one in linear algebra. Drazin inverse Hat matrix Inverse...
    47 KB (7,644 words) - 15:51, 13 April 2025
  • of a symmetric group (up to isomorphism). In the symmetric semigroup (of all transformations) one also finds a weaker, non-unique notion of inverse (called...
    37 KB (3,772 words) - 08:50, 25 February 2025
  • set of all partial bijections on X {\displaystyle X} forms the symmetric inverse semigroup. Charts in the atlases which specify the structure of manifolds...
    15 KB (2,055 words) - 02:36, 2 December 2024
  • mathematics, the Munn semigroup is the inverse semigroup of isomorphisms between principal ideals of a semilattice (a commutative semigroup of idempotents)...
    3 KB (401 words) - 02:41, 10 July 2019
  • = |x|). Monoid Inverse function Involution (mathematics) Multiplicative inverse Reflection (mathematics) Reflection symmetry Semigroup Gallian, Joseph...
    9 KB (902 words) - 20:58, 2 April 2025
  • lemma Semigroup Subsemigroup Free semigroup Green's relations Inverse semigroup (or inversion semigroup, cf. [1]) Krohn–Rhodes theory Semigroup algebra...
    12 KB (1,129 words) - 10:50, 10 October 2024
  • Thumbnail for Generating set of a group
    slightly modified when one deals with semigroups or monoids. Indeed, this definition should not use the notion of inverse operation anymore. The set S {\displaystyle...
    11 KB (1,746 words) - 01:54, 8 March 2025
  • Laradji, A.; Umar, A. (2007), "Combinatorial results for the symmetric inverse semigroup", Semigroup Forum, 75 (1): 221–236, doi:10.1007/s00233-007-0732-8,...
    4 KB (534 words) - 01:27, 19 January 2025
  • equal to its converse is a symmetric relation; in the language of dagger categories, it is self-adjoint. Furthermore, the semigroup of endorelations on a set...
    13 KB (1,725 words) - 07:43, 7 October 2024
  • In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the...
    15 KB (2,275 words) - 23:53, 30 April 2025
  • Thumbnail for Monoid
    Monoid (category Semigroup theory)
    with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of...
    35 KB (4,462 words) - 23:51, 18 April 2025
  • Nambooripad order (category Semigroup theory)
    to inverse semigroups as follows: For any a and b in an inverse semigroup S, a ≤ b if and only if a = eb for some idempotent e in S. In the symmetric inverse...
    7 KB (817 words) - 01:46, 23 June 2023
  • Thumbnail for Involution (mathematics)
    an involution (on the real numbers) is symmetric across the line y = x. This is due to the fact that the inverse of any general function will be its reflection...
    17 KB (2,240 words) - 06:01, 19 February 2025
  • Thumbnail for General linear group
    order of the symmetric group (See Lorscheid's article) – in the philosophy of the field with one element, one thus interprets the symmetric group as the...
    23 KB (2,965 words) - 00:14, 1 September 2024
  • Thumbnail for Topological group
    S^{-1}:=\left\{s^{-1}:s\in S\right\}.} The closure of every symmetric set in a commutative topological group is symmetric. If S is any subset of a commutative topological...
    51 KB (7,560 words) - 10:58, 15 April 2025
  • Thumbnail for Subgroup
    of H. The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups. Suppose that...
    20 KB (1,643 words) - 00:28, 16 December 2024
  • a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five nonisomorphic semigroups having...
    12 KB (955 words) - 11:53, 18 July 2024
  • Biordered set (category Semigroup theory)
    idempotents in a semigroup. The set of idempotents in a semigroup is a biordered set and every biordered set is the set of idempotents of some semigroup. A regular...
    13 KB (1,186 words) - 00:29, 25 February 2025
  • representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been...
    106 KB (21,527 words) - 22:35, 12 January 2025
  • Thumbnail for Quasigroup
    multiplicative inverse Semigroup – an algebraic structure consisting of a set together with an associative binary operation Monoid – a semigroup with an identity...
    32 KB (3,671 words) - 18:36, 5 May 2025