• In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with...
    24 KB (4,620 words) - 16:28, 1 April 2025
  • In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is...
    2 KB (400 words) - 13:37, 17 March 2025
  • algebraic geometry and number theory, the torsion conjecture or uniform boundedness conjecture for torsion points for abelian varieties states that the...
    12 KB (1,434 words) - 12:14, 5 January 2025
  • Uniform boundedness conjecture may refer to: Uniform boundedness conjecture for torsion points Uniform boundedness conjecture for rational points Uniform...
    369 bytes (69 words) - 08:24, 25 February 2021
  • Thumbnail for Functional analysis
    operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The...
    20 KB (2,496 words) - 21:48, 29 April 2025
  • holomorphic, then the limit is also holomorphic. The uniform boundedness principle states that a pointwise bounded family of continuous linear operators between...
    25 KB (3,750 words) - 06:54, 15 January 2025
  • in PN(K), and the general Uniform Boundedness Conjecture says that the number of preperiodic points in PN(K) may be bounded solely in terms of N, the...
    15 KB (1,668 words) - 12:55, 12 July 2024
  • In arithmetic geometry, the uniform boundedness conjecture for rational points asserts that for a given number field K {\displaystyle K} and a positive...
    4 KB (447 words) - 17:21, 24 March 2025
  • generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle. The following notation and notions are used, where R :...
    13 KB (2,374 words) - 15:47, 7 September 2024
  • the easiest proof uses the non-boundedness of Dirichlet's kernel in L1(T) and the Banach–Steinhaus uniform boundedness principle. As typical for existence...
    23 KB (4,043 words) - 04:16, 14 January 2025
  • operators are closed. Alternatively, it can be argued using the uniform boundedness principle. One relies on the symmetric assumption, therefore the...
    3 KB (373 words) - 15:46, 25 May 2024
  • Thumbnail for Hans Hahn (mathematician)
    Hahn–Banach theorem and (independently of Banach and Steinhaus) the uniform boundedness principle. Other theorems include: the Hahn decomposition theorem;...
    12 KB (1,183 words) - 11:18, 14 May 2025
  • Ultrabarrelled space Uniform boundedness principle#Generalisations – Theorem stating that pointwise boundedness implies uniform boundedness Ursescu theorem –...
    23 KB (3,555 words) - 14:33, 11 January 2025
  • under f {\displaystyle f} is bounded. The following theorem relates local boundedness of functions with the local boundedness of topological vector spaces:...
    8 KB (1,517 words) - 19:08, 30 May 2024
  • prove the open mapping theorem, the closed graph theorem and the uniform boundedness principle. BCT1 also shows that every nonempty complete metric space...
    10 KB (1,479 words) - 19:52, 30 January 2025
  • normability criterion – Characterization of normable spaces Local boundedness Totally bounded space – Generalization of compactness Narici & Beckenstein 2011...
    25 KB (3,426 words) - 18:24, 14 March 2025
  • d\mu }=\int _{S}{f\,d\mu }.} Remark: The pointwise convergence and uniform boundedness of the sequence can be relaxed to hold only μ-almost everywhere,...
    13 KB (2,206 words) - 04:12, 11 May 2025
  • satisfied by a uniformly bounded sequence { fn } of differentiable functions with uniformly bounded derivatives. Indeed, uniform boundedness of the derivatives...
    27 KB (3,819 words) - 12:15, 7 April 2025
  • Thumbnail for Bounded function
    a bounded set in Y {\displaystyle Y} .[citation needed] Weaker than boundedness is local boundedness. A family of bounded functions may be uniformly bounded...
    7 KB (987 words) - 20:25, 30 April 2025
  • of rational maps, and her recent proof (with DeMarco and Ye) of uniform boundedness results for numbers of torsion points on families of bielliptic genus...
    4 KB (345 words) - 09:16, 20 May 2025
  • implies χ ( R / P , R / Q ) > 0 {\displaystyle \chi (R/P,R/Q)>0} . Uniform boundedness conjecture for rational points: do algebraic curves of genus g ≥...
    195 KB (20,026 words) - 13:12, 7 May 2025
  • In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the...
    15 KB (2,519 words) - 14:01, 17 April 2025
  • Patricia Pacelli showed that the Bombieri–Lang conjecture implies a uniform boundedness conjecture for rational points: there is a constant B g , d {\displaystyle...
    6 KB (704 words) - 22:16, 11 January 2025
  • is dense in X . {\displaystyle X.} A special case of this is the uniform boundedness principle. The empty space is a Baire space. It is the only space...
    13 KB (1,794 words) - 07:46, 25 May 2025
  • Thumbnail for Hilbert space
    Every weakly convergent sequence {xn} is bounded, by the uniform boundedness principle. Conversely, every bounded sequence in a Hilbert space admits weakly...
    128 KB (17,469 words) - 08:29, 22 May 2025
  • Thumbnail for Fourier series
    continuous T-periodic function need not converge pointwise. The uniform boundedness principle yields a simple non-constructive proof of this fact. In...
    72 KB (11,149 words) - 17:24, 13 May 2025
  • mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered...
    14 KB (1,935 words) - 11:37, 6 May 2025
  • Thumbnail for Extreme value theorem
    theorems imply the boundedness theorem and the extreme value theorem. Rusnock, Paul; Kerr-Lawson, Angus (2005). "Bolzano and Uniform Continuity". Historia...
    22 KB (3,926 words) - 10:22, 17 May 2025
  • operators from X {\displaystyle X} to Y . {\displaystyle Y.} The uniform boundedness principle states that if for all x {\displaystyle x} in X {\displaystyle...
    102 KB (17,048 words) - 16:58, 14 April 2025
  • (Zhu 2007, Theorem 1.14, p.11), and note in this reference that the uniform boundedness will apply in the situation where F ⊆ X satisfies (∀φ ∈ Hom(X, K))...
    29 KB (4,868 words) - 02:28, 16 May 2025