• mathematical logic and computer science, the lambda-mu calculus is an extension of the lambda calculus introduced by Michel Parigot. It introduces two...
    6 KB (842 words) - 06:54, 12 April 2025
  • In mathematical logic, the lambda calculus (also written as λ-calculus) is a formal system for expressing computation based on function abstraction and...
    90 KB (12,117 words) - 02:29, 15 June 2025
  • in the variable Z {\displaystyle Z} , much like in lambda calculus λ Z . ϕ {\displaystyle \lambda Z.\phi } is a function with formula ϕ {\displaystyle...
    12 KB (1,816 words) - 21:25, 20 August 2024
  • ISBN 978-0-89791-343-0, S2CID 3005134. Parigot, Michel (1992), "Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction", International...
    58 KB (6,386 words) - 00:10, 10 June 2025
  • }{}_{\sigma \mu \nu }=\Gamma ^{\rho }{}_{\nu \sigma ,\mu }-\Gamma ^{\rho }{}_{\mu \sigma ,\nu }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu...
    46 KB (7,275 words) - 11:43, 2 June 2025
  • Λ g μ ν = κ T μ ν . {\displaystyle R_{\mu \nu }-{\frac {1}{2}}Rg_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu }.} In standard units, each term on...
    35 KB (5,077 words) - 15:22, 28 May 2025
  • This symbol satisfies the relations μ = λ κ = ι κ 2 . {\displaystyle \mu =\lambda \kappa =\iota \kappa ^{2}.} For example, the directed edge obtained by...
    11 KB (1,585 words) - 19:06, 10 January 2025
  • Thumbnail for Lambda
    the concepts of lambda calculus. λ indicates an eigenvalue in the mathematics of linear algebra. In the physics of particles, lambda indicates the thermal...
    23 KB (2,775 words) - 02:33, 4 June 2025
  • {\displaystyle \mu (A)>0} implies λ ( A ) > 0 {\displaystyle \lambda (A)>0} . This condition is written as μ ≪ λ . {\displaystyle \mu \ll \lambda .} We say...
    19 KB (2,685 words) - 08:58, 28 May 2025
  • }H_{\lambda }\,d\mu (\lambda ).} The elements of this space are functions (or "sections") s ( λ ) , λ ∈ σ ( A ) , {\displaystyle s(\lambda ),\,\,\lambda \in \sigma...
    25 KB (3,852 words) - 23:00, 22 April 2025
  • ( t ) = 0 {\displaystyle \mu (t)=0} , f Δ = f ′ {\displaystyle f^{\Delta }=f'} ; is the derivative used in standard calculus. If T = Z {\displaystyle \mathbb...
    13 KB (1,756 words) - 02:07, 12 November 2024
  • Thumbnail for Lorentz transformation
    Lambda ^{1}}_{\mu }{\Lambda ^{2}}_{\nu }F^{\mu \nu }={\Lambda ^{1}}_{\mu }{\Lambda ^{2}}_{2}F^{\mu 2}={\Lambda ^{1}}_{0}{\Lambda ^{2}}_{2}F^{02}+{\Lambda...
    107 KB (14,891 words) - 20:19, 19 June 2025
  • {\displaystyle \|(T_{h}-\lambda )f_{n}\|_{p}^{p}=\|(h-\lambda )f_{n}\|_{p}^{p}=\int _{S_{n}}|h-\lambda \;|^{p}d\mu \leq {\frac {1}{n^{p}}}\;\mu (S_{n})={\frac...
    26 KB (3,809 words) - 05:57, 18 January 2025
  • } . {\displaystyle \lambda _{f}(t)=\mu \{x\in S:|f(x)|>t\}.} If f {\displaystyle f} is in L p ( S , μ ) {\displaystyle L^{p}(S,\mu )} for some p {\displaystyle...
    65 KB (12,217 words) - 21:17, 14 April 2025
  • {\Delta _{h}}{h}}(1+\lambda h)^{\frac {x}{h}}={\frac {\Delta _{h}}{h}}e^{\ln(1+\lambda h){\frac {x}{h}}}=\lambda e^{\ln(1+\lambda h){\frac {x}{h}}}\ ,}...
    38 KB (5,863 words) - 17:31, 5 June 2025
  • {\displaystyle {\frac {d(\nu +\mu )}{d\lambda }}={\frac {d\nu }{d\lambda }}+{\frac {d\mu }{d\lambda }}\quad \lambda {\text{-almost everywhere}}.} If...
    23 KB (3,614 words) - 20:46, 30 April 2025
  • Thumbnail for Normal distribution
    f(x)\,dx-\lambda _{0}\left(1-\int _{-\infty }^{\infty }f(x)\,dx\right)-\lambda _{1}\left(\mu -\int _{-\infty }^{\infty }f(x)x\,dx\right)-\lambda _{2}\left(\sigma...
    151 KB (22,720 words) - 15:29, 20 June 2025
  • Mogensen–Scott encoding (category Lambda calculus)
    the lambda calculus. Church encoding performs a similar function. The data and operators form a mathematical structure which is embedded in the lambda calculus...
    10 KB (1,781 words) - 02:54, 7 July 2024
  • lexical scope was similar to the lambda calculus. Sussman and Steele decided to try to model Actors in the lambda calculus. They called their modeling system...
    17 KB (2,021 words) - 21:38, 27 May 2025
  • that s μ h r = ∑ λ s λ {\displaystyle \displaystyle s_{\mu }h_{r}=\sum _{\lambda }s_{\lambda }} where hr is a complete homogeneous symmetric polynomial...
    2 KB (242 words) - 08:56, 28 January 2024
  • the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the...
    44 KB (7,266 words) - 03:08, 20 April 2025
  • _{n=1}^{N}x_{n}\right)\mu +\left(\sum _{n=1}^{N}\mu ^{2}\right)+\lambda _{0}\mu ^{2}-2\lambda _{0}\mu _{0}\mu +\lambda _{0}\mu _{0}^{2}\right\}+C_{3}\\&=-{\frac...
    56 KB (11,235 words) - 18:32, 21 January 2025
  • Thumbnail for Geodesic
    {d^{2}x^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {dx^{\mu }}{dt}}{\frac {dx^{\nu }}{dt}}=0,} where Γ μ ν λ {\displaystyle \Gamma _{\mu \nu }^{\lambda...
    32 KB (4,261 words) - 21:52, 19 June 2025
  • ) . {\displaystyle m{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=-\lambda \mathbf {v} +{\boldsymbol {\eta }}\left(t\right).} Here, v {\displaystyle...
    31 KB (5,246 words) - 04:59, 26 May 2025
  • {\displaystyle f,g\in C(\sigma (a))} and scalars λ , μ ∈ C {\displaystyle \lambda ,\mu \in \mathbb {C} } : One can therefore imagine actually inserting the...
    24 KB (4,323 words) - 22:12, 17 March 2025
  • ( λ ) < ∞ . {\displaystyle \int _{\mathbf {R} }|\lambda |^{2}\ \|\psi (\lambda )\|^{2}\,d\mu (\lambda )<\infty .} Non-negative countably additive measures...
    48 KB (8,156 words) - 10:24, 4 March 2025
  • g λ ν = g μ ν = δ μ ν , {\displaystyle g^{\mu \lambda }\,g_{\lambda \nu }=g^{\mu }{}_{\nu }=\delta ^{\mu }{}_{\nu },} so any mixed version of the metric...
    4 KB (645 words) - 03:23, 31 March 2023
  • Minkowski–Steiner formula (category Calculus of variations)
    A ) δ , {\displaystyle \lambda (\partial A):=\liminf _{\delta \to 0}{\frac {\mu \left(A+{\overline {B_{\delta }}}\right)-\mu (A)}{\delta }},} where B...
    4 KB (636 words) - 22:39, 9 April 2023
  • In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential...
    10 KB (1,596 words) - 01:17, 9 May 2025
  • mu })&=E_{n}+x^{\mu }\partial _{\mu }E_{n}+{\frac {1}{2!}}x^{\mu }x^{\nu }\partial _{\mu }\partial _{\nu }E_{n}+\cdots \\[1ex]\left|n(x^{\mu })\right\rangle...
    70 KB (15,991 words) - 17:43, 25 May 2025