mathematical logic and computer science, the lambda-mu calculus is an extension of the lambda calculus introduced by Michel Parigot. It introduces two...
6 KB (842 words) - 06:54, 12 April 2025
In mathematical logic, the lambda calculus (also written as λ-calculus) is a formal system for expressing computation based on function abstraction and...
90 KB (12,117 words) - 02:29, 15 June 2025
in the variable Z {\displaystyle Z} , much like in lambda calculus λ Z . ϕ {\displaystyle \lambda Z.\phi } is a function with formula ϕ {\displaystyle...
12 KB (1,816 words) - 21:25, 20 August 2024
ISBN 978-0-89791-343-0, S2CID 3005134. Parigot, Michel (1992), "Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction", International...
58 KB (6,386 words) - 00:10, 10 June 2025
}{}_{\sigma \mu \nu }=\Gamma ^{\rho }{}_{\nu \sigma ,\mu }-\Gamma ^{\rho }{}_{\mu \sigma ,\nu }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu...
46 KB (7,275 words) - 11:43, 2 June 2025
Λ g μ ν = κ T μ ν . {\displaystyle R_{\mu \nu }-{\frac {1}{2}}Rg_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu }.} In standard units, each term on...
35 KB (5,077 words) - 15:22, 28 May 2025
This symbol satisfies the relations μ = λ κ = ι κ 2 . {\displaystyle \mu =\lambda \kappa =\iota \kappa ^{2}.} For example, the directed edge obtained by...
11 KB (1,585 words) - 19:06, 10 January 2025
the concepts of lambda calculus. λ indicates an eigenvalue in the mathematics of linear algebra. In the physics of particles, lambda indicates the thermal...
23 KB (2,775 words) - 02:33, 4 June 2025
Absolute continuity (redirect from Fundamental theorem of Lebesgue integral calculus)
{\displaystyle \mu (A)>0} implies λ ( A ) > 0 {\displaystyle \lambda (A)>0} . This condition is written as μ ≪ λ . {\displaystyle \mu \ll \lambda .} We say...
19 KB (2,685 words) - 08:58, 28 May 2025
Spectral theorem (section Functional calculus)
}H_{\lambda }\,d\mu (\lambda ).} The elements of this space are functions (or "sections") s ( λ ) , λ ∈ σ ( A ) , {\displaystyle s(\lambda ),\,\,\lambda \in \sigma...
25 KB (3,852 words) - 23:00, 22 April 2025
( t ) = 0 {\displaystyle \mu (t)=0} , f Δ = f ′ {\displaystyle f^{\Delta }=f'} ; is the derivative used in standard calculus. If T = Z {\displaystyle \mathbb...
13 KB (1,756 words) - 02:07, 12 November 2024
Lambda ^{1}}_{\mu }{\Lambda ^{2}}_{\nu }F^{\mu \nu }={\Lambda ^{1}}_{\mu }{\Lambda ^{2}}_{2}F^{\mu 2}={\Lambda ^{1}}_{0}{\Lambda ^{2}}_{2}F^{02}+{\Lambda...
107 KB (14,891 words) - 20:19, 19 June 2025
{\displaystyle \|(T_{h}-\lambda )f_{n}\|_{p}^{p}=\|(h-\lambda )f_{n}\|_{p}^{p}=\int _{S_{n}}|h-\lambda \;|^{p}d\mu \leq {\frac {1}{n^{p}}}\;\mu (S_{n})={\frac...
26 KB (3,809 words) - 05:57, 18 January 2025
} . {\displaystyle \lambda _{f}(t)=\mu \{x\in S:|f(x)|>t\}.} If f {\displaystyle f} is in L p ( S , μ ) {\displaystyle L^{p}(S,\mu )} for some p {\displaystyle...
65 KB (12,217 words) - 21:17, 14 April 2025
Finite difference (redirect from Calculus of sums and differences)
{\Delta _{h}}{h}}(1+\lambda h)^{\frac {x}{h}}={\frac {\Delta _{h}}{h}}e^{\ln(1+\lambda h){\frac {x}{h}}}=\lambda e^{\ln(1+\lambda h){\frac {x}{h}}}\ ,}...
38 KB (5,863 words) - 17:31, 5 June 2025
{\displaystyle {\frac {d(\nu +\mu )}{d\lambda }}={\frac {d\nu }{d\lambda }}+{\frac {d\mu }{d\lambda }}\quad \lambda {\text{-almost everywhere}}.} If...
23 KB (3,614 words) - 20:46, 30 April 2025
f(x)\,dx-\lambda _{0}\left(1-\int _{-\infty }^{\infty }f(x)\,dx\right)-\lambda _{1}\left(\mu -\int _{-\infty }^{\infty }f(x)x\,dx\right)-\lambda _{2}\left(\sigma...
151 KB (22,720 words) - 15:29, 20 June 2025
Mogensen–Scott encoding (category Lambda calculus)
the lambda calculus. Church encoding performs a similar function. The data and operators form a mathematical structure which is embedded in the lambda calculus...
10 KB (1,781 words) - 02:54, 7 July 2024
History of the Scheme programming language (redirect from Lambda Papers)
lexical scope was similar to the lambda calculus. Sussman and Steele decided to try to model Actors in the lambda calculus. They called their modeling system...
17 KB (2,021 words) - 21:38, 27 May 2025
that s μ h r = ∑ λ s λ {\displaystyle \displaystyle s_{\mu }h_{r}=\sum _{\lambda }s_{\lambda }} where hr is a complete homogeneous symmetric polynomial...
2 KB (242 words) - 08:56, 28 January 2024
Helmholtz decomposition (redirect from Fundamental theorem of vector calculus)
the Helmholtz decomposition theorem or the fundamental theorem of vector calculus states that certain differentiable vector fields can be resolved into the...
44 KB (7,266 words) - 03:08, 20 April 2025
_{n=1}^{N}x_{n}\right)\mu +\left(\sum _{n=1}^{N}\mu ^{2}\right)+\lambda _{0}\mu ^{2}-2\lambda _{0}\mu _{0}\mu +\lambda _{0}\mu _{0}^{2}\right\}+C_{3}\\&=-{\frac...
56 KB (11,235 words) - 18:32, 21 January 2025
Geodesic (section Calculus of variations)
{d^{2}x^{\lambda }}{dt^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {dx^{\mu }}{dt}}{\frac {dx^{\nu }}{dt}}=0,} where Γ μ ν λ {\displaystyle \Gamma _{\mu \nu }^{\lambda...
32 KB (4,261 words) - 21:52, 19 June 2025
) . {\displaystyle m{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=-\lambda \mathbf {v} +{\boldsymbol {\eta }}\left(t\right).} Here, v {\displaystyle...
31 KB (5,246 words) - 04:59, 26 May 2025
{\displaystyle f,g\in C(\sigma (a))} and scalars λ , μ ∈ C {\displaystyle \lambda ,\mu \in \mathbb {C} } : One can therefore imagine actually inserting the...
24 KB (4,323 words) - 22:12, 17 March 2025
Self-adjoint operator (section Functional calculus)
( λ ) < ∞ . {\displaystyle \int _{\mathbf {R} }|\lambda |^{2}\ \|\psi (\lambda )\|^{2}\,d\mu (\lambda )<\infty .} Non-negative countably additive measures...
48 KB (8,156 words) - 10:24, 4 March 2025
g λ ν = g μ ν = δ μ ν , {\displaystyle g^{\mu \lambda }\,g_{\lambda \nu }=g^{\mu }{}_{\nu }=\delta ^{\mu }{}_{\nu },} so any mixed version of the metric...
4 KB (645 words) - 03:23, 31 March 2023
Minkowski–Steiner formula (category Calculus of variations)
A ) δ , {\displaystyle \lambda (\partial A):=\liminf _{\delta \to 0}{\frac {\mu \left(A+{\overline {B_{\delta }}}\right)-\mu (A)}{\delta }},} where B...
4 KB (636 words) - 22:39, 9 April 2023
In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential...
10 KB (1,596 words) - 01:17, 9 May 2025
mu })&=E_{n}+x^{\mu }\partial _{\mu }E_{n}+{\frac {1}{2!}}x^{\mu }x^{\nu }\partial _{\mu }\partial _{\nu }E_{n}+\cdots \\[1ex]\left|n(x^{\mu })\right\rangle...
70 KB (15,991 words) - 17:43, 25 May 2025