Set associated with a complex-valued polynomial
The amoeba of P ( z , w ) = w − 2 z − 1. {\displaystyle P(z,w)=w-2z-1.} The amoeba of P ( z , w ) = 3 z 2 + 5 z w + w 3 + 1. {\displaystyle P(z,w)=3z^{2}+5zw+w^{3}+1.} Notice the "vacuole " in the middle of the amoeba. The amoeba of P ( z , w ) = 1 + z + z 2 + z 3 + z 2 w 3 + 10 z w + 12 z 2 w + 10 z 2 w 2 . {\displaystyle P(z,w)=1+z+z^{2}+z^{3}+z^{2}w^{3}+10zw+12z^{2}w+10z^{2}w^{2}.} The amoeba of P ( z , w ) = 50 z 3 + 83 z 2 w + 24 z w 2 + w 3 + 392 z 2 + 414 z w + 50 w 2 − 28 z + 59 w − 100. {\displaystyle P(z,w)=50z^{3}+83z^{2}w+24zw^{2}+w^{3}+392z^{2}+414zw+50w^{2}-28z+59w-100.} Points in the amoeba of P ( x , y , z ) = x + y + z − 1. {\displaystyle P(x,y,z)=x+y+z-1.} Note that the amoeba is actually 3-dimensional, and not a surface (this is not entirely evident from the image). In complex analysis , a branch of mathematics , an amoeba is a set associated with a polynomial in one or more complex variables . Amoebas have applications in algebraic geometry , especially tropical geometry .
Consider the function
Log : ( C ∖ { 0 } ) n → R n {\displaystyle \operatorname {Log} :{\big (}{\mathbb {C} }\setminus \{0\}{\big )}^{n}\to \mathbb {R} ^{n}} defined on the set of all n -tuples z = ( z 1 , z 2 , … , z n ) {\displaystyle z=(z_{1},z_{2},\dots ,z_{n})} of non-zero complex numbers with values in the Euclidean space R n , {\displaystyle \mathbb {R} ^{n},} given by the formula
Log ( z 1 , z 2 , … , z n ) = ( log | z 1 | , log | z 2 | , … , log | z n | ) . {\displaystyle \operatorname {Log} (z_{1},z_{2},\dots ,z_{n})={\big (}\log |z_{1}|,\log |z_{2}|,\dots ,\log |z_{n}|{\big )}.} Here, log denotes the natural logarithm . If p (z ) is a polynomial in n {\displaystyle n} complex variables, its amoeba A p {\displaystyle {\mathcal {A}}_{p}} is defined as the image of the set of zeros of p under Log, so
A p = { Log ( z ) : z ∈ ( C ∖ { 0 } ) n , p ( z ) = 0 } . {\displaystyle {\mathcal {A}}_{p}=\left\{\operatorname {Log} (z):z\in {\big (}\mathbb {C} \setminus \{0\}{\big )}^{n},p(z)=0\right\}.} Amoebas were introduced in 1994 in a book by Gelfand , Kapranov, and Zelevinsky .[ 1]
Let V ⊂ ( C ∗ ) n {\displaystyle V\subset (\mathbb {C} ^{*})^{n}} be the zero locus of a polynomial
f ( z ) = ∑ j ∈ A a j z j {\displaystyle f(z)=\sum _{j\in A}a_{j}z^{j}} where A ⊂ Z n {\displaystyle A\subset \mathbb {Z} ^{n}} is finite, a j ∈ C {\displaystyle a_{j}\in \mathbb {C} } and z j = z 1 j 1 ⋯ z n j n {\displaystyle z^{j}=z_{1}^{j_{1}}\cdots z_{n}^{j_{n}}} if z = ( z 1 , … , z n ) {\displaystyle z=(z_{1},\dots ,z_{n})} and j = ( j 1 , … , j n ) {\displaystyle j=(j_{1},\dots ,j_{n})} . Let Δ f {\displaystyle \Delta _{f}} be the Newton polyhedron of f {\displaystyle f} , i.e.,
Δ f = Convex Hull { j ∈ A ∣ a j ≠ 0 } . {\displaystyle \Delta _{f}={\text{Convex Hull}}\{j\in A\mid a_{j}\neq 0\}.} Then
Any amoeba is a closed set . Any connected component of the complement R n ∖ A p {\displaystyle \mathbb {R} ^{n}\setminus {\mathcal {A}}_{p}} is convex .[ 2] The area of an amoeba of a not identically zero polynomial in two complex variables is finite. A two-dimensional amoeba has a number of "tentacles", which are infinitely long and exponentially narrow towards infinity. The number of connected components of the complement R n ∖ A p {\displaystyle \mathbb {R} ^{n}\setminus {\mathcal {A}}_{p}} is not greater than # ( Δ f ∩ Z n ) {\displaystyle \#(\Delta _{f}\cap \mathbb {Z} ^{n})} and not less than the number of vertices of Δ f {\displaystyle \Delta _{f}} .[ 2] There is an injection from the set of connected components of complement R n ∖ A p {\displaystyle \mathbb {R} ^{n}\setminus {\mathcal {A}}_{p}} to Δ f ∩ Z n {\displaystyle \Delta _{f}\cap \mathbb {Z} ^{n}} . The vertices of Δ f {\displaystyle \Delta _{f}} are in the image under this injection. A connected component of complement R n ∖ A p {\displaystyle \mathbb {R} ^{n}\setminus {\mathcal {A}}_{p}} is bounded if and only if its image is in the interior of Δ f {\displaystyle \Delta _{f}} .[ 2] If V ⊂ ( C ∗ ) 2 {\displaystyle V\subset (\mathbb {C} ^{*})^{2}} , then the area of A p ( V ) {\displaystyle {\mathcal {A}}_{p}(V)} is not greater than π 2 Area ( Δ f ) {\displaystyle \pi ^{2}{\text{Area}}(\Delta _{f})} .[ 2] A useful tool in studying amoebas is the Ronkin function . For p (z ), a polynomial in n complex variables, one defines the Ronkin function
N p : R n → R {\displaystyle N_{p}:\mathbb {R} ^{n}\to \mathbb {R} } by the formula
N p ( x ) = 1 ( 2 π i ) n ∫ Log − 1 ( x ) log | p ( z ) | d z 1 z 1 ∧ d z 2 z 2 ∧ ⋯ ∧ d z n z n , {\displaystyle N_{p}(x)={\frac {1}{(2\pi i)^{n}}}\int _{\operatorname {Log} ^{-1}(x)}\log |p(z)|\,{\frac {dz_{1}}{z_{1}}}\wedge {\frac {dz_{2}}{z_{2}}}\wedge \cdots \wedge {\frac {dz_{n}}{z_{n}}},} where x {\displaystyle x} denotes x = ( x 1 , x 2 , … , x n ) . {\displaystyle x=(x_{1},x_{2},\dots ,x_{n}).} Equivalently, N p {\displaystyle N_{p}} is given by the integral
N p ( x ) = 1 ( 2 π ) n ∫ [ 0 , 2 π ] n log | p ( z ) | d θ 1 d θ 2 ⋯ d θ n , {\displaystyle N_{p}(x)={\frac {1}{(2\pi )^{n}}}\int _{[0,2\pi ]^{n}}\log |p(z)|\,d\theta _{1}\,d\theta _{2}\cdots d\theta _{n},} where
z = ( e x 1 + i θ 1 , e x 2 + i θ 2 , … , e x n + i θ n ) . {\displaystyle z=\left(e^{x_{1}+i\theta _{1}},e^{x_{2}+i\theta _{2}},\dots ,e^{x_{n}+i\theta _{n}}\right).} The Ronkin function is convex and affine on each connected component of the complement of the amoeba of p ( z ) {\displaystyle p(z)} .[ 3]
As an example, the Ronkin function of a monomial
p ( z ) = a z 1 k 1 z 2 k 2 … z n k n {\displaystyle p(z)=az_{1}^{k_{1}}z_{2}^{k_{2}}\dots z_{n}^{k_{n}}} with a ≠ 0 {\displaystyle a\neq 0} is
N p ( x ) = log | a | + k 1 x 1 + k 2 x 2 + ⋯ + k n x n . {\displaystyle N_{p}(x)=\log |a|+k_{1}x_{1}+k_{2}x_{2}+\cdots +k_{n}x_{n}.} ^ Gelfand, I. M. ; Kapranov, M. M.; Zelevinsky, A. V. (1994). Discriminants, resultants, and multidimensional determinants . Mathematics: Theory & Applications. Boston, MA: Birkhäuser. ISBN 0-8176-3660-9 . Zbl 0827.14036 . ^ a b c d Itenberg et al (2007) p. 3. ^ Gross, Mark (2004). "Amoebas of complex curves and tropical curves". In Guest, Martin (ed.). UK-Japan winter school 2004—Geometry and analysis towards quantum theory. Lecture notes from the school, University of Durham, Durham, UK, 6–9 January 2004 . Seminar on Mathematical Sciences. Vol. 30. Yokohama: Keio University, Department of Mathematics. pp. 24– 36. Zbl 1083.14061 . Itenberg, Ilia; Mikhalkin, Grigory; Shustin, Eugenii (2007). Tropical algebraic geometry . Oberwolfach Seminars. Vol. 35. Basel: Birkhäuser. ISBN 978-3-7643-8309-1 . Zbl 1162.14300 . Viro, Oleg (2002), "What Is ... An Amoeba?" (PDF) , Notices of the American Mathematical Society , 49 (8): 916– 917 .