Brucite

Brucite
General
CategoryOxide mineral
FormulaMg(OH)2
IMA symbolBrc[1]
Strunz classification4.FE.05
Crystal systemTrigonal
Crystal classHexagonal crystal family (3m)
H-M symbol: (3 2/m)
Space groupP3m1
Unit cella = 3.142(1) Å, c = 4.766(2) Å; Z = 1
Identification
ColorWhite, pale green, blue, gray; honey-yellow to brownish red
Crystal habitTabular crystals; platy or foliated masses and rosettes – fibrous to massive
CleavagePerfect on {0001}
FractureIrregular
TenacitySectile
Mohs scale hardness2.5 to 3
LusterVitreous to pearly
StreakWhite
DiaphaneityTransparent
Specific gravity2.39 to 2.40
Optical propertiesUniaxial (+)
Refractive indexnω = 1.56–1.59
nε = 1.58–1.60
Birefringence0.02
Other characteristicsPyroelectric
References[2][3][4]

Brucite is the mineral form of magnesium hydroxide, with the chemical formula Mg(OH)2. It is a common alteration product of periclase in marble; a low-temperature hydrothermal vein mineral in metamorphosed limestones and chlorite schists; and formed during serpentinization of dunites. Brucite is often found in association with serpentine, calcite, aragonite, dolomite, magnesite, hydromagnesite, artinite, talc and chrysotile.

It adopts a layered CdI2-like structure with hydrogen-bonds between the layers.[5]

Discovery

[edit]

Brucite was first described in 1824 by François Sulpice Beudant[6] and named for the discoverer, American mineralogist, Archibald Bruce (1777–1818). A fibrous variety of brucite is called nemalite. It occurs in fibers or laths, usually elongated along [1010], but sometimes [1120] crystalline directions.

Occurrence

[edit]

A notable location in the US is Wood's Chrome Mine, Cedar Hill Quarry, Lancaster County, Pennsylvania. Yellow, white and blue brucite with a botryoidal habit was discovered in Qila Saifullah District of Province Baluchistan, Pakistan. In a later discovery, brucite also occurred in the Bela Ophiolite of Wadh, Khuzdar District, Province Baluchistan, Pakistan. Brucite has also occurred from South Africa, Italy, Russia, Canada, and other localities as well, but the most notable discoveries are the US, Russian and Pakistani examples.[citation needed]

Industrial applications

[edit]

Synthetic brucite is mainly consumed as a precursor to magnesia (MgO), a useful refractory and thermal insulator. It finds some use as a flame retardant because it thermally decomposes to release water in a similar way to aluminium hydroxide (Al(OH)3) and mixtures of huntite (Mg3Ca(CO3)4) and hydromagnesite (Mg5(CO3)4(OH)2·4H2O).[7][8] It also constitutes a significant source of magnesium for industry. Although generally deemed safe, brucite can be contaminated with naturally occurring asbestos fibers.[9]

Degradation of cement and concrete

[edit]

When cement or concrete are exposed to Mg2+ and SO2−4 ions simultaneously present in seawater, the precipitation of the poorly soluble brucite contributes to enhance the formation of gypsum in the sulfate attack :

MgSO4 + Ca(OH)2 + 2 H2O → Mg(OH)2 + CaSO4 · 2H2O

The precipitation of insoluble Mg(OH)2 helps to considerably drive the chemical equilibrium of the reaction to the right. It exacerbates the sulfate attack resulting in the formation of gypsum and ettringite (an expansive phase) responsible for the mechanical stress in the hardened cement paste. However, brucite, a phase with a small molar volume (24.63 cm3/mol),[10] may contribute to clogging the porous network in the hardened cement paste, hindering the diffusion of these harmful reactive species in the cement matrix. This can delay the decalcification of the C-S-H phase (the "glue" phase in the hardened cement paste responsible for the cohesion in concrete) and its transformation into an M-S-H phase.

The exact mechanism of brucite degradation of hardened cement paste remains a matter of debate.[11] If brucite had a high molar volume, it could be de facto considered a swelling phase (like ettringite, or highly hydrated minerals), but this does not appear to be the case. It is unclear if it causes expansion or not, and how. If it replaces another phase locally (topo chemical replacement), in cases where its molar volume is smaller than that of the phase it replaces, no expansion is expected; rather, a decrease in porosity is anticipated. However, if it crystallizes in a large number of tiny crystals growing between existing ones, even with a small molar volume, it could exert a considerable crystallization pressure in the cement matrix, resulting in tensile stress, expansion and cracking.

Anyway, prolonged contact between seawater, or naturally rich Mg-brines, and concrete may induce durability issues for regularly immersed concrete structures, and their components, especially if they also contain steel reinforcements (pitting corrosion caused by chloride ions).

The use of dolomite as aggregate in concrete made with a cement with a too high alkali content can also cause brucite precipitation, driving the dedolomitization reaction, as observed in the alkali-aggregate reaction.[12]

Ca,Mg(CO3)2 + 2 NaOH → Mg(OH)2 + CaCO3 + Na2CO3

Consequently, the use of dolomite is prohibited as aggregate for concrete.

[edit]

See also

[edit]

References

[edit]
  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ Brucite on Mindat.org
  3. ^ Handbook of Mineralogy
  4. ^ Brucite on Webmineral
  5. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. doi:10.1016/C2009-0-30414-6. ISBN 978-0-08-037941-8.
  6. ^ "Blog | GeoRarities". 2021-01-13. Retrieved 2021-06-02.
  7. ^ Hollingbery, LA; Hull TR (2010). "The Thermal Decomposition of Huntite and Hydromagnesite - A Review". Thermochimica Acta. 509 (1–2): 1–11. doi:10.1016/j.tca.2010.06.012.
  8. ^ Hollingbery, LA; Hull TR (2010). "The Fire Retardant Behaviour of Huntite and Hydromagnesite - A Review". Polymer Degradation and Stability. 95 (12): 2213–2225. doi:10.1016/j.polymdegradstab.2010.08.019.
  9. ^ Malferrari, Daniele; Di Guisseppe, Dario; Scognamiglio, Valentina; Gualtieri, Alessandro F. (2021). "Commercial brucite, a worldwide used raw material deemed safe, can be contaminated by asbestos". Periodico di Mineralogia. 90 (3): 317–324. doi:10.13133/2239-1002/17384.
  10. ^ "Data consultation – Minerals – Molar volume". BRGM, Thermoddem. Retrieved 2025-07-22.
  11. ^ Lee, Hyomin; Robert D. Cody; Anita M. Cody; Paul G. Spry (2002). "Observations on brucite formation and the role of brucite in Iowa highway concrete deterioration". Environmental and Engineering Geoscience. 8 (2): 137–145. Bibcode:2002EEGeo...8..137L. doi:10.2113/gseegeosci.8.2.137. Retrieved 2009-09-10.
  12. ^ Lee, Hyomin; Cody, Robert D.; Cody, Anita M.; Spry, Paul G. (1 May 2002). "Observations on brucite formation and the role of brucite in Iowa highway concrete deterioration". Environmental and Engineering Geoscience. 8 (2): 137–145. Bibcode:2002EEGeo...8..137L. doi:10.2113/gseegeosci.8.2.137. ISSN 1078-7275.

Further reading

[edit]