Cycloeucalenol

Cycloeucalenol
Names
IUPAC name
(3β,4α,5α,9β)-4,14-Dimethyl-9,19-cycloergost-24(28)-en-3-ol
Other names
3beta-Cycloeucalenol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
UNII
  • InChI=1S/C30H50O/c1-19(2)20(3)8-9-21(4)23-12-14-28(7)26-11-10-24-22(5)25(31)13-15-29(24)18-30(26,29)17-16-27(23,28)6/h19,21-26,31H,3,8-18H2,1-2,4-7H3/t21-,22+,23-,24+,25+,26+,27-,28+,29-,30+/m1/s1 ☒N
    Key: HUNLTIZKNQDZEI-PGFZVWMDSA-N checkY
  • C[C@H]1[C@@H]2CC[C@H]3[C@@]4(CC[C@@H]([C@]4(CC[C@@]35[C@@]2(C5)CC[C@@H]1O)C)[C@H](C)CCC(=C)C(C)C)C
Properties
C30H50O
Molar mass 426.729 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

Cycloeucalenol is a 3β-sterol, a pentacyclic triterpenoid and a member of phytosterols group.[1][2] The compound derives from a hydride of a 5α-ergostane.

Natural occurrence

[edit]

Cycloeucalenol is a naturally occurring triterpenoid and a sterol-like compound found in certain plants[3][4] (i.e. Boophone disticha,[5] Herissanthia tiubae,[6] etc.) and microorganisms. It is classified as a cycloartane-type triterpenoid, a subgroup of terpenoids characterized by a cyclopropane ring in their structure. Cycloeucalenol is an intermediate in the biosynthesis of phytosterols, which are essential components of plant cell membranes.[7]

Biosynthesis

[edit]

Cycloeucalenol is derived from cycloartenol, a key precursor in the phytosterol biosynthetic pathway. The conversion involves enzymatic modifications, including the opening of the cyclopropane ring and subsequent rearrangements.[8]

References

[edit]
  1. ^ Heintz, R.; Bimpson, T.; Benveniste, P. (1 November 1972). "Plant sterol metabolism studies on the substrate specificity of an enzyme capable of opening the cyclopropane ring of cycloeucalenol". Biochemical and Biophysical Research Communications. 49 (3): 820–826. Bibcode:1972BBRC...49..820H. doi:10.1016/0006-291X(72)90484-6. ISSN 0006-291X. PMID 4638757. Retrieved 20 July 2025.
  2. ^ Chopra, R. N. (2005). Biology of Bryophytes. New Age International. p. 207. ISBN 978-81-224-1343-4. Retrieved 20 July 2025.
  3. ^ Cruz, Jorddy Neves (28 August 2023). Drug Discovery and Design Using Natural Products. Springer Nature. p. 191. ISBN 978-3-031-35205-8. Retrieved 20 July 2025.
  4. ^ Pal, Dilipkumar; Nayak, Amit Kumar (14 December 2020). Bioactive Natural Products for Pharmaceutical Applications. Springer Nature. p. 488. ISBN 978-3-030-54027-2. Retrieved 20 July 2025.
  5. ^ Adewusi, Emmanuel Adekanmi; Steenkamp, Paul; Fouche, Gerda; Steenkamp, Vanessa (1 September 2013). "Isolation of Cycloeucalenol from Boophone Disticha and Evaluation of its Cytotoxicity". Natural Product Communications. 8 (9): 1934578X1300800906. doi:10.1177/1934578X1300800906. ISSN 1934-578X. Retrieved 20 July 2025.
  6. ^ Gomes, Ana Yara S.; Souza, Maria de Fátima V.; Cortes, Steyner F.; Lemos, Virgínia S. (October 2005). "Mechanism Involved in the Spasmolytic Effect of a Mixture of Two Triterpenes, Cycloartenol and Cycloeucalenol, Isolated from Herissanthia tiubae in the Guinea-Pig Ileum". Planta Medica. 71 (11): 1025–1029. Bibcode:2005PlMed..71.1025G. doi:10.1055/s-2005-871291. ISSN 0032-0943. PMID 16320203. Retrieved 20 July 2025.
  7. ^ Brar, Satinder Kaur; Sarma, Saurabh Jyoti; Pakshirajan, Kannan (2 June 2016). Platform Chemical Biorefinery: Future Green Chemistry. Elsevier. p. 346. ISBN 978-0-12-803004-2. Retrieved 20 July 2025.
  8. ^ Martonosi, Anthony (6 December 2012). The Enzymes of Biological Membranes: Volume 2 Biosynthesis of Cell Components. Springer Science & Business Media. p. 215. ISBN 978-1-4684-2655-7. Retrieved 20 July 2025.