This article summarizes several identities in exterior calculus , a mathematical notation used in differential geometry .[ 1] [ 2] [ 3] [ 4] [ 5]
The following summarizes short definitions and notations that are used in this article.
M {\displaystyle M} , N {\displaystyle N} are n {\displaystyle n} -dimensional smooth manifolds, where n ∈ N {\displaystyle n\in \mathbb {N} } . That is, differentiable manifolds that can be differentiated enough times for the purposes on this page.
p ∈ M {\displaystyle p\in M} , q ∈ N {\displaystyle q\in N} denote one point on each of the manifolds.
The boundary of a manifold M {\displaystyle M} is a manifold ∂ M {\displaystyle \partial M} , which has dimension n − 1 {\displaystyle n-1} . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} .
We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .
Tangent and cotangent bundles [ edit ] T M {\displaystyle TM} , T ∗ M {\displaystyle T^{*}M} denote the tangent bundle and cotangent bundle , respectively, of the smooth manifold M {\displaystyle M} .
T p M {\displaystyle T_{p}M} , T q N {\displaystyle T_{q}N} denote the tangent spaces of M {\displaystyle M} , N {\displaystyle N} at the points p {\displaystyle p} , q {\displaystyle q} , respectively. T p ∗ M {\displaystyle T_{p}^{*}M} denotes the cotangent space of M {\displaystyle M} at the point p {\displaystyle p} .
Sections of the tangent bundles, also known as vector fields , are typically denoted as X , Y , Z ∈ Γ ( T M ) {\displaystyle X,Y,Z\in \Gamma (TM)} such that at a point p ∈ M {\displaystyle p\in M} we have X | p , Y | p , Z | p ∈ T p M {\displaystyle X|_{p},Y|_{p},Z|_{p}\in T_{p}M} . Sections of the cotangent bundle, also known as differential 1-forms (or covector fields), are typically denoted as α , β ∈ Γ ( T ∗ M ) {\displaystyle \alpha ,\beta \in \Gamma (T^{*}M)} such that at a point p ∈ M {\displaystyle p\in M} we have α | p , β | p ∈ T p ∗ M {\displaystyle \alpha |_{p},\beta |_{p}\in T_{p}^{*}M} . An alternative notation for Γ ( T ∗ M ) {\displaystyle \Gamma (T^{*}M)} is Ω 1 ( M ) {\displaystyle \Omega ^{1}(M)} .
Differential k {\displaystyle k} -forms, which we refer to simply as k {\displaystyle k} -forms here, are differential forms defined on T M {\displaystyle TM} . We denote the set of all k {\displaystyle k} -forms as Ω k ( M ) {\displaystyle \Omega ^{k}(M)} . For 0 ≤ k , l , m ≤ n {\displaystyle 0\leq k,\ l,\ m\leq n} we usually write α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} , β ∈ Ω l ( M ) {\displaystyle \beta \in \Omega ^{l}(M)} , γ ∈ Ω m ( M ) {\displaystyle \gamma \in \Omega ^{m}(M)} .
0 {\displaystyle 0} -forms f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} are just scalar functions C ∞ ( M ) {\displaystyle C^{\infty }(M)} on M {\displaystyle M} . 1 ∈ Ω 0 ( M ) {\displaystyle \mathbf {1} \in \Omega ^{0}(M)} denotes the constant 0 {\displaystyle 0} -form equal to 1 {\displaystyle 1} everywhere.
Omitted elements of a sequence [ edit ] When we are given ( k + 1 ) {\displaystyle (k+1)} inputs X 0 , … , X k {\displaystyle X_{0},\ldots ,X_{k}} and a k {\displaystyle k} -form α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} we denote omission of the i {\displaystyle i} th entry by writing
α ( X 0 , … , X ^ i , … , X k ) := α ( X 0 , … , X i − 1 , X i + 1 , … , X k ) . {\displaystyle \alpha (X_{0},\ldots ,{\hat {X}}_{i},\ldots ,X_{k}):=\alpha (X_{0},\ldots ,X_{i-1},X_{i+1},\ldots ,X_{k}).} The exterior product is also known as the wedge product . It is denoted by ∧ : Ω k ( M ) × Ω l ( M ) → Ω k + l ( M ) {\displaystyle \wedge :\Omega ^{k}(M)\times \Omega ^{l}(M)\rightarrow \Omega ^{k+l}(M)} . The exterior product of a k {\displaystyle k} -form α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} and an l {\displaystyle l} -form β ∈ Ω l ( M ) {\displaystyle \beta \in \Omega ^{l}(M)} produce a ( k + l ) {\displaystyle (k+l)} -form α ∧ β ∈ Ω k + l ( M ) {\displaystyle \alpha \wedge \beta \in \Omega ^{k+l}(M)} . It can be written using the set S ( k , k + l ) {\displaystyle S(k,k+l)} of all permutations σ {\displaystyle \sigma } of { 1 , … , n } {\displaystyle \{1,\ldots ,n\}} such that σ ( 1 ) < … < σ ( k ) , σ ( k + 1 ) < … < σ ( k + l ) {\displaystyle \sigma (1)<\ldots <\sigma (k),\ \sigma (k+1)<\ldots <\sigma (k+l)} as
( α ∧ β ) ( X 1 , … , X k + l ) = ∑ σ ∈ S ( k , k + l ) sign ( σ ) α ( X σ ( 1 ) , … , X σ ( k ) ) ⊗ β ( X σ ( k + 1 ) , … , X σ ( k + l ) ) . {\displaystyle (\alpha \wedge \beta )(X_{1},\ldots ,X_{k+l})=\sum _{\sigma \in S(k,k+l)}{\text{sign}}(\sigma )\alpha (X_{\sigma (1)},\ldots ,X_{\sigma (k)})\otimes \beta (X_{\sigma (k+1)},\ldots ,X_{\sigma (k+l)}).} Directional derivative [ edit ] The directional derivative of a 0-form f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} along a section X ∈ Γ ( T M ) {\displaystyle X\in \Gamma (TM)} is a 0-form denoted ∂ X f . {\displaystyle \partial _{X}f.}
Exterior derivative [ edit ] The exterior derivative d k : Ω k ( M ) → Ω k + 1 ( M ) {\displaystyle d_{k}:\Omega ^{k}(M)\rightarrow \Omega ^{k+1}(M)} is defined for all 0 ≤ k ≤ n {\displaystyle 0\leq k\leq n} . We generally omit the subscript when it is clear from the context.
For a 0 {\displaystyle 0} -form f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} we have d 0 f ∈ Ω 1 ( M ) {\displaystyle d_{0}f\in \Omega ^{1}(M)} as the 1 {\displaystyle 1} -form that gives the directional derivative, i.e., for the section X ∈ Γ ( T M ) {\displaystyle X\in \Gamma (TM)} we have ( d 0 f ) ( X ) = ∂ X f {\displaystyle (d_{0}f)(X)=\partial _{X}f} , the directional derivative of f {\displaystyle f} along X {\displaystyle X} .[ 6]
For 0 < k ≤ n {\displaystyle 0<k\leq n} ,[ 6]
( d k ω ) ( X 0 , … , X k ) = ∑ 0 ≤ j ≤ k ( − 1 ) j d 0 ( ω ( X 0 , … , X ^ j , … , X k ) ) ( X j ) + ∑ 0 ≤ i < j ≤ k ( − 1 ) i + j ω ( [ X i , X j ] , X 0 , … , X ^ i , … , X ^ j , … , X k ) . {\displaystyle (d_{k}\omega )(X_{0},\ldots ,X_{k})=\sum _{0\leq j\leq k}(-1)^{j}d_{0}(\omega (X_{0},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}))(X_{j})+\sum _{0\leq i<j\leq k}(-1)^{i+j}\omega ([X_{i},X_{j}],X_{0},\ldots ,{\hat {X}}_{i},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}).} The Lie bracket of sections X , Y ∈ Γ ( T M ) {\displaystyle X,Y\in \Gamma (TM)} is defined as the unique section [ X , Y ] ∈ Γ ( T M ) {\displaystyle [X,Y]\in \Gamma (TM)} that satisfies
∀ f ∈ Ω 0 ( M ) ⇒ ∂ [ X , Y ] f = ∂ X ∂ Y f − ∂ Y ∂ X f . {\displaystyle \forall f\in \Omega ^{0}(M)\Rightarrow \partial _{[X,Y]}f=\partial _{X}\partial _{Y}f-\partial _{Y}\partial _{X}f.} If ϕ : M → N {\displaystyle \phi :M\rightarrow N} is a smooth map, then d ϕ | p : T p M → T ϕ ( p ) N {\displaystyle d\phi |_{p}:T_{p}M\rightarrow T_{\phi (p)}N} defines a tangent map from M {\displaystyle M} to N {\displaystyle N} . It is defined through curves γ {\displaystyle \gamma } on M {\displaystyle M} with derivative γ ′ ( 0 ) = X ∈ T p M {\displaystyle \gamma '(0)=X\in T_{p}M} such that
d ϕ ( X ) := ( ϕ ∘ γ ) ′ . {\displaystyle d\phi (X):=(\phi \circ \gamma )'.} Note that ϕ {\displaystyle \phi } is a 0 {\displaystyle 0} -form with values in N {\displaystyle N} .
If ϕ : M → N {\displaystyle \phi :M\rightarrow N} is a smooth map, then the pull-back of a k {\displaystyle k} -form α ∈ Ω k ( N ) {\displaystyle \alpha \in \Omega ^{k}(N)} is defined such that for any k {\displaystyle k} -dimensional submanifold Σ ⊂ M {\displaystyle \Sigma \subset M}
∫ Σ ϕ ∗ α = ∫ ϕ ( Σ ) α . {\displaystyle \int _{\Sigma }\phi ^{*}\alpha =\int _{\phi (\Sigma )}\alpha .} The pull-back can also be expressed as
( ϕ ∗ α ) ( X 1 , … , X k ) = α ( d ϕ ( X 1 ) , … , d ϕ ( X k ) ) . {\displaystyle (\phi ^{*}\alpha )(X_{1},\ldots ,X_{k})=\alpha (d\phi (X_{1}),\ldots ,d\phi (X_{k})).} Also known as the interior derivative, the interior product given a section Y ∈ Γ ( T M ) {\displaystyle Y\in \Gamma (TM)} is a map ι Y : Ω k + 1 ( M ) → Ω k ( M ) {\displaystyle \iota _{Y}:\Omega ^{k+1}(M)\rightarrow \Omega ^{k}(M)} that effectively substitutes the first input of a ( k + 1 ) {\displaystyle (k+1)} -form with Y {\displaystyle Y} . If α ∈ Ω k + 1 ( M ) {\displaystyle \alpha \in \Omega ^{k+1}(M)} and X i ∈ Γ ( T M ) {\displaystyle X_{i}\in \Gamma (TM)} then
( ι Y α ) ( X 1 , … , X k ) = α ( Y , X 1 , … , X k ) . {\displaystyle (\iota _{Y}\alpha )(X_{1},\ldots ,X_{k})=\alpha (Y,X_{1},\ldots ,X_{k}).} Given a nondegenerate bilinear form g p ( ⋅ , ⋅ ) {\displaystyle g_{p}(\cdot ,\cdot )} on each T p M {\displaystyle T_{p}M} that is continuous on M {\displaystyle M} , the manifold becomes a pseudo-Riemannian manifold . We denote the metric tensor g {\displaystyle g} , defined pointwise by g ( X , Y ) | p = g p ( X | p , Y | p ) {\displaystyle g(X,Y)|_{p}=g_{p}(X|_{p},Y|_{p})} . We call s = sign ( g ) {\displaystyle s=\operatorname {sign} (g)} the signature of the metric. A Riemannian manifold has s = 1 {\displaystyle s=1} , whereas Minkowski space has s = − 1 {\displaystyle s=-1} .
Musical isomorphisms [ edit ] The metric tensor g ( ⋅ , ⋅ ) {\displaystyle g(\cdot ,\cdot )} induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat ♭ {\displaystyle \flat } and sharp ♯ {\displaystyle \sharp } . A section A ∈ Γ ( T M ) {\displaystyle A\in \Gamma (TM)} corresponds to the unique one-form A ♭ ∈ Ω 1 ( M ) {\displaystyle A^{\flat }\in \Omega ^{1}(M)} such that for all sections X ∈ Γ ( T M ) {\displaystyle X\in \Gamma (TM)} , we have:
A ♭ ( X ) = g ( A , X ) . {\displaystyle A^{\flat }(X)=g(A,X).} A one-form α ∈ Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} corresponds to the unique vector field α ♯ ∈ Γ ( T M ) {\displaystyle \alpha ^{\sharp }\in \Gamma (TM)} such that for all X ∈ Γ ( T M ) {\displaystyle X\in \Gamma (TM)} , we have:
α ( X ) = g ( α ♯ , X ) . {\displaystyle \alpha (X)=g(\alpha ^{\sharp },X).} These mappings extend via multilinearity to mappings from k {\displaystyle k} -vector fields to k {\displaystyle k} -forms and k {\displaystyle k} -forms to k {\displaystyle k} -vector fields through
( A 1 ∧ A 2 ∧ ⋯ ∧ A k ) ♭ = A 1 ♭ ∧ A 2 ♭ ∧ ⋯ ∧ A k ♭ {\displaystyle (A_{1}\wedge A_{2}\wedge \cdots \wedge A_{k})^{\flat }=A_{1}^{\flat }\wedge A_{2}^{\flat }\wedge \cdots \wedge A_{k}^{\flat }} ( α 1 ∧ α 2 ∧ ⋯ ∧ α k ) ♯ = α 1 ♯ ∧ α 2 ♯ ∧ ⋯ ∧ α k ♯ . {\displaystyle (\alpha _{1}\wedge \alpha _{2}\wedge \cdots \wedge \alpha _{k})^{\sharp }=\alpha _{1}^{\sharp }\wedge \alpha _{2}^{\sharp }\wedge \cdots \wedge \alpha _{k}^{\sharp }.} For an n -manifold M , the Hodge star operator ⋆ : Ω k ( M ) → Ω n − k ( M ) {\displaystyle {\star }:\Omega ^{k}(M)\rightarrow \Omega ^{n-k}(M)} is a duality mapping taking a k {\displaystyle k} -form α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} to an ( n − k ) {\displaystyle (n{-}k)} -form ( ⋆ α ) ∈ Ω n − k ( M ) {\displaystyle ({\star }\alpha )\in \Omega ^{n-k}(M)} .
It can be defined in terms of an oriented frame ( X 1 , … , X n ) {\displaystyle (X_{1},\ldots ,X_{n})} for T M {\displaystyle TM} , orthonormal with respect to the given metric tensor g {\displaystyle g} :
( ⋆ α ) ( X 1 , … , X n − k ) = α ( X n − k + 1 , … , X n ) . {\displaystyle ({\star }\alpha )(X_{1},\ldots ,X_{n-k})=\alpha (X_{n-k+1},\ldots ,X_{n}).} Co-differential operator [ edit ] The co-differential operator δ : Ω k ( M ) → Ω k − 1 ( M ) {\displaystyle \delta :\Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)} on an n {\displaystyle n} dimensional manifold M {\displaystyle M} is defined by
δ := ( − 1 ) k ⋆ − 1 d ⋆ = ( − 1 ) n k + n + 1 ⋆ d ⋆ . {\displaystyle \delta :=(-1)^{k}{\star }^{-1}d{\star }=(-1)^{nk+n+1}{\star }d{\star }.} The Hodge–Dirac operator , d + δ {\displaystyle d+\delta } , is a Dirac operator studied in Clifford analysis .
An n {\displaystyle n} -dimensional orientable manifold M is a manifold that can be equipped with a choice of an n -form μ ∈ Ω n ( M ) {\displaystyle \mu \in \Omega ^{n}(M)} that is continuous and nonzero everywhere on M .
On an orientable manifold M {\displaystyle M} the canonical choice of a volume form given a metric tensor g {\displaystyle g} and an orientation is d e t := | det g | d X 1 ♭ ∧ … ∧ d X n ♭ {\displaystyle \mathbf {det} :={\sqrt {|\det g|}}\;dX_{1}^{\flat }\wedge \ldots \wedge dX_{n}^{\flat }} for any basis d X 1 , … , d X n {\displaystyle dX_{1},\ldots ,dX_{n}} ordered to match the orientation.
Given a volume form d e t {\displaystyle \mathbf {det} } and a unit normal vector N {\displaystyle N} we can also define an area form σ := ι N det {\displaystyle \sigma :=\iota _{N}{\textbf {det}}} on the boundary ∂ M . {\displaystyle \partial M.}
A generalization of the metric tensor, the symmetric bilinear form between two k {\displaystyle k} -forms α , β ∈ Ω k ( M ) {\displaystyle \alpha ,\beta \in \Omega ^{k}(M)} , is defined pointwise on M {\displaystyle M} by
⟨ α , β ⟩ | p := ⋆ ( α ∧ ⋆ β ) | p . {\displaystyle \langle \alpha ,\beta \rangle |_{p}:={\star }(\alpha \wedge {\star }\beta )|_{p}.} The L 2 {\displaystyle L^{2}} -bilinear form for the space of k {\displaystyle k} -forms Ω k ( M ) {\displaystyle \Omega ^{k}(M)} is defined by
⟨ ⟨ α , β ⟩ ⟩ := ∫ M α ∧ ⋆ β . {\displaystyle \langle \!\langle \alpha ,\beta \rangle \!\rangle :=\int _{M}\alpha \wedge {\star }\beta .} In the case of a Riemannian manifold, each is an inner product (i.e. is positive-definite).
We define the Lie derivative L : Ω k ( M ) → Ω k ( M ) {\displaystyle {\mathcal {L}}:\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} through Cartan's magic formula for a given section X ∈ Γ ( T M ) {\displaystyle X\in \Gamma (TM)} as
L X = d ∘ ι X + ι X ∘ d . {\displaystyle {\mathcal {L}}_{X}=d\circ \iota _{X}+\iota _{X}\circ d.} It describes the change of a k {\displaystyle k} -form along a flow ϕ t {\displaystyle \phi _{t}} associated to the section X {\displaystyle X} .
Laplace–Beltrami operator[ edit ] The Laplacian Δ : Ω k ( M ) → Ω k ( M ) {\displaystyle \Delta :\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} is defined as Δ = − ( d δ + δ d ) {\displaystyle \Delta =-(d\delta +\delta d)} .
Important definitions [ edit ] Definitions on Ωk (M )[ edit ] α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} is called...
closed if d α = 0 {\displaystyle d\alpha =0} exact if α = d β {\displaystyle \alpha =d\beta } for some β ∈ Ω k − 1 {\displaystyle \beta \in \Omega ^{k-1}} coclosed if δ α = 0 {\displaystyle \delta \alpha =0} coexact if α = δ β {\displaystyle \alpha =\delta \beta } for some β ∈ Ω k + 1 {\displaystyle \beta \in \Omega ^{k+1}} harmonic if closed and coclosed The k {\displaystyle k} -th cohomology of a manifold M {\displaystyle M} and its exterior derivative operators d 0 , … , d n − 1 {\displaystyle d_{0},\ldots ,d_{n-1}} is given by
H k ( M ) := ker ( d k ) im ( d k − 1 ) {\displaystyle H^{k}(M):={\frac {{\text{ker}}(d_{k})}{{\text{im}}(d_{k-1})}}} Two closed k {\displaystyle k} -forms α , β ∈ Ω k ( M ) {\displaystyle \alpha ,\beta \in \Omega ^{k}(M)} are in the same cohomology class if their difference is an exact form i.e.
[ α ] = [ β ] ⟺ α − β = d η for some η ∈ Ω k − 1 ( M ) {\displaystyle [\alpha ]=[\beta ]\ \ \Longleftrightarrow \ \ \alpha {-}\beta =d\eta \ {\text{ for some }}\eta \in \Omega ^{k-1}(M)} A closed surface of genus g {\displaystyle g} will have 2 g {\displaystyle 2g} generators which are harmonic.
Given α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} , its Dirichlet energy is
E D ( α ) := 1 2 ⟨ ⟨ d α , d α ⟩ ⟩ + 1 2 ⟨ ⟨ δ α , δ α ⟩ ⟩ {\displaystyle {\mathcal {E}}_{\text{D}}(\alpha ):={\dfrac {1}{2}}\langle \!\langle d\alpha ,d\alpha \rangle \!\rangle +{\dfrac {1}{2}}\langle \!\langle \delta \alpha ,\delta \alpha \rangle \!\rangle } Exterior derivative properties [ edit ] ∫ Σ d α = ∫ ∂ Σ α {\displaystyle \int _{\Sigma }d\alpha =\int _{\partial \Sigma }\alpha } ( Stokes' theorem ) d ∘ d = 0 {\displaystyle d\circ d=0} ( cochain complex ) d ( α ∧ β ) = d α ∧ β + ( − 1 ) k α ∧ d β {\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta } for α ∈ Ω k ( M ) , β ∈ Ω l ( M ) {\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)} ( Leibniz rule ) d f ( X ) = ∂ X f {\displaystyle df(X)=\partial _{X}f} for f ∈ Ω 0 ( M ) , X ∈ Γ ( T M ) {\displaystyle f\in \Omega ^{0}(M),\ X\in \Gamma (TM)} ( directional derivative ) d α = 0 {\displaystyle d\alpha =0} for α ∈ Ω n ( M ) , dim ( M ) = n {\displaystyle \alpha \in \Omega ^{n}(M),\ {\text{dim}}(M)=n} Exterior product properties [ edit ] α ∧ β = ( − 1 ) k l β ∧ α {\displaystyle \alpha \wedge \beta =(-1)^{kl}\beta \wedge \alpha } for α ∈ Ω k ( M ) , β ∈ Ω l ( M ) {\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)} ( alternating ) ( α ∧ β ) ∧ γ = α ∧ ( β ∧ γ ) {\displaystyle (\alpha \wedge \beta )\wedge \gamma =\alpha \wedge (\beta \wedge \gamma )} ( associativity ) ( λ α ) ∧ β = λ ( α ∧ β ) {\displaystyle (\lambda \alpha )\wedge \beta =\lambda (\alpha \wedge \beta )} for λ ∈ R {\displaystyle \lambda \in \mathbb {R} } ( compatibility of scalar multiplication ) α ∧ ( β 1 + β 2 ) = α ∧ β 1 + α ∧ β 2 {\displaystyle \alpha \wedge (\beta _{1}+\beta _{2})=\alpha \wedge \beta _{1}+\alpha \wedge \beta _{2}} ( distributivity over addition ) α ∧ α = 0 {\displaystyle \alpha \wedge \alpha =0} for α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} when k {\displaystyle k} is odd or rank α ≤ 1 {\displaystyle \operatorname {rank} \alpha \leq 1} . The rank of a k {\displaystyle k} -form α {\displaystyle \alpha } means the minimum number of monomial terms (exterior products of one-forms) that must be summed to produce α {\displaystyle \alpha } . Pull-back properties [ edit ] d ( ϕ ∗ α ) = ϕ ∗ ( d α ) {\displaystyle d(\phi ^{*}\alpha )=\phi ^{*}(d\alpha )} ( commutative with d {\displaystyle d} ) ϕ ∗ ( α ∧ β ) = ( ϕ ∗ α ) ∧ ( ϕ ∗ β ) {\displaystyle \phi ^{*}(\alpha \wedge \beta )=(\phi ^{*}\alpha )\wedge (\phi ^{*}\beta )} ( distributes over ∧ {\displaystyle \wedge } ) ( ϕ 1 ∘ ϕ 2 ) ∗ = ϕ 2 ∗ ϕ 1 ∗ {\displaystyle (\phi _{1}\circ \phi _{2})^{*}=\phi _{2}^{*}\phi _{1}^{*}} ( contravariant ) ϕ ∗ f = f ∘ ϕ {\displaystyle \phi ^{*}f=f\circ \phi } for f ∈ Ω 0 ( N ) {\displaystyle f\in \Omega ^{0}(N)} ( function composition ) Musical isomorphism properties [ edit ] ( X ♭ ) ♯ = X {\displaystyle (X^{\flat })^{\sharp }=X} ( α ♯ ) ♭ = α {\displaystyle (\alpha ^{\sharp })^{\flat }=\alpha } Interior product properties [ edit ] ι X ∘ ι X = 0 {\displaystyle \iota _{X}\circ \iota _{X}=0} ( nilpotent ) ι X ∘ ι Y = − ι Y ∘ ι X {\displaystyle \iota _{X}\circ \iota _{Y}=-\iota _{Y}\circ \iota _{X}} ι X ( α ∧ β ) = ( ι X α ) ∧ β + ( − 1 ) k α ∧ ( ι X β ) {\displaystyle \iota _{X}(\alpha \wedge \beta )=(\iota _{X}\alpha )\wedge \beta +(-1)^{k}\alpha \wedge (\iota _{X}\beta )} for α ∈ Ω k ( M ) , β ∈ Ω l ( M ) {\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)} ( Leibniz rule ) ι X α = α ( X ) {\displaystyle \iota _{X}\alpha =\alpha (X)} for α ∈ Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} ι X f = 0 {\displaystyle \iota _{X}f=0} for f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} ι X ( f α ) = f ι X α {\displaystyle \iota _{X}(f\alpha )=f\iota _{X}\alpha } for f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} Hodge star properties [ edit ] ⋆ ( λ 1 α + λ 2 β ) = λ 1 ( ⋆ α ) + λ 2 ( ⋆ β ) {\displaystyle {\star }(\lambda _{1}\alpha +\lambda _{2}\beta )=\lambda _{1}({\star }\alpha )+\lambda _{2}({\star }\beta )} for λ 1 , λ 2 ∈ R {\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {R} } ( linearity ) ⋆ ⋆ α = s ( − 1 ) k ( n − k ) α {\displaystyle {\star }{\star }\alpha =s(-1)^{k(n-k)}\alpha } for α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} , n = dim ( M ) {\displaystyle n=\dim(M)} , and s = sign ( g ) {\displaystyle s=\operatorname {sign} (g)} the sign of the metric ⋆ ( − 1 ) = s ( − 1 ) k ( n − k ) ⋆ {\displaystyle {\star }^{(-1)}=s(-1)^{k(n-k)}{\star }} ( inversion ) ⋆ ( f α ) = f ( ⋆ α ) {\displaystyle {\star }(f\alpha )=f({\star }\alpha )} for f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} ( commutative with 0 {\displaystyle 0} -forms ) ⟨ ⟨ α , α ⟩ ⟩ = ⟨ ⟨ ⋆ α , ⋆ α ⟩ ⟩ {\displaystyle \langle \!\langle \alpha ,\alpha \rangle \!\rangle =\langle \!\langle {\star }\alpha ,{\star }\alpha \rangle \!\rangle } for α ∈ Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} ( Hodge star preserves 1 {\displaystyle 1} -form norm ) ⋆ 1 = d e t {\displaystyle {\star }\mathbf {1} =\mathbf {det} } ( Hodge dual of constant function 1 is the volume form ) Co-differential operator properties [ edit ] δ ∘ δ = 0 {\displaystyle \delta \circ \delta =0} ( nilpotent ) ⋆ δ = ( − 1 ) k d ⋆ {\displaystyle {\star }\delta =(-1)^{k}d{\star }} and ⋆ d = ( − 1 ) k + 1 δ ⋆ {\displaystyle {\star }d=(-1)^{k+1}\delta {\star }} ( Hodge adjoint to d {\displaystyle d} ) ⟨ ⟨ d α , β ⟩ ⟩ = ⟨ ⟨ α , δ β ⟩ ⟩ {\displaystyle \langle \!\langle d\alpha ,\beta \rangle \!\rangle =\langle \!\langle \alpha ,\delta \beta \rangle \!\rangle } if ∂ M = 0 {\displaystyle \partial M=0} ( δ {\displaystyle \delta } adjoint to d {\displaystyle d} ) In general, ∫ M d α ∧ ⋆ β = ∫ ∂ M α ∧ ⋆ β + ∫ M α ∧ ⋆ δ β {\displaystyle \int _{M}d\alpha \wedge \star \beta =\int _{\partial M}\alpha \wedge \star \beta +\int _{M}\alpha \wedge \star \delta \beta } δ f = 0 {\displaystyle \delta f=0} for f ∈ Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} Lie derivative properties [ edit ] d ∘ L X = L X ∘ d {\displaystyle d\circ {\mathcal {L}}_{X}={\mathcal {L}}_{X}\circ d} ( commutative with d {\displaystyle d} ) ι X ∘ L X = L X ∘ ι X {\displaystyle \iota _{X}\circ {\mathcal {L}}_{X}={\mathcal {L}}_{X}\circ \iota _{X}} ( commutative with ι X {\displaystyle \iota _{X}} ) L X ( ι Y α ) = ι [ X , Y ] α + ι Y L X α {\displaystyle {\mathcal {L}}_{X}(\iota _{Y}\alpha )=\iota _{[X,Y]}\alpha +\iota _{Y}{\mathcal {L}}_{X}\alpha } L X ( α ∧ β ) = ( L X α ) ∧ β + α ∧ ( L X β ) {\displaystyle {\mathcal {L}}_{X}(\alpha \wedge \beta )=({\mathcal {L}}_{X}\alpha )\wedge \beta +\alpha \wedge ({\mathcal {L}}_{X}\beta )} ( Leibniz rule ) Exterior calculus identities [ edit ] ι X ( ⋆ 1 ) = ⋆ X ♭ {\displaystyle \iota _{X}({\star }\mathbf {1} )={\star }X^{\flat }} ι X ( ⋆ α ) = ( − 1 ) k ⋆ ( X ♭ ∧ α ) {\displaystyle \iota _{X}({\star }\alpha )=(-1)^{k}{\star }(X^{\flat }\wedge \alpha )} if α ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} ι X ( ϕ ∗ α ) = ϕ ∗ ( ι d ϕ ( X ) α ) {\displaystyle \iota _{X}(\phi ^{*}\alpha )=\phi ^{*}(\iota _{d\phi (X)}\alpha )} ν , μ ∈ Ω n ( M ) , μ non-zero ⇒ ∃ f ∈ Ω 0 ( M ) : ν = f μ {\displaystyle \nu ,\mu \in \Omega ^{n}(M),\mu {\text{ non-zero }}\ \Rightarrow \ \exists \ f\in \Omega ^{0}(M):\ \nu =f\mu } X ♭ ∧ ⋆ Y ♭ = g ( X , Y ) ( ⋆ 1 ) {\displaystyle X^{\flat }\wedge {\star }Y^{\flat }=g(X,Y)({\star }\mathbf {1} )} ( bilinear form ) [ X , [ Y , Z ] ] + [ Y , [ Z , X ] ] + [ Z , [ X , Y ] ] = 0 {\displaystyle [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0} ( Jacobi identity ) If n = dim M {\displaystyle n=\dim M}
dim Ω k ( M ) = ( n k ) {\displaystyle \dim \Omega ^{k}(M)={\binom {n}{k}}} for 0 ≤ k ≤ n {\displaystyle 0\leq k\leq n} dim Ω k ( M ) = 0 {\displaystyle \dim \Omega ^{k}(M)=0} for k < 0 , k > n {\displaystyle k<0,\ k>n} If X 1 , … , X n ∈ Γ ( T M ) {\displaystyle X_{1},\ldots ,X_{n}\in \Gamma (TM)} is a basis, then a basis of Ω k ( M ) {\displaystyle \Omega ^{k}(M)} is
{ X σ ( 1 ) ♭ ∧ … ∧ X σ ( k ) ♭ : σ ∈ S ( k , n ) } {\displaystyle \{X_{\sigma (1)}^{\flat }\wedge \ldots \wedge X_{\sigma (k)}^{\flat }\ :\ \sigma \in S(k,n)\}} Let α , β , γ , α i ∈ Ω 1 ( M ) {\displaystyle \alpha ,\beta ,\gamma ,\alpha _{i}\in \Omega ^{1}(M)} and X , Y , Z , X i {\displaystyle X,Y,Z,X_{i}} be vector fields.
α ( X ) = det [ α ( X ) ] {\displaystyle \alpha (X)=\det {\begin{bmatrix}\alpha (X)\\\end{bmatrix}}} ( α ∧ β ) ( X , Y ) = det [ α ( X ) α ( Y ) β ( X ) β ( Y ) ] {\displaystyle (\alpha \wedge \beta )(X,Y)=\det {\begin{bmatrix}\alpha (X)&\alpha (Y)\\\beta (X)&\beta (Y)\\\end{bmatrix}}} ( α ∧ β ∧ γ ) ( X , Y , Z ) = det [ α ( X ) α ( Y ) α ( Z ) β ( X ) β ( Y ) β ( Z ) γ ( X ) γ ( Y ) γ ( Z ) ] {\displaystyle (\alpha \wedge \beta \wedge \gamma )(X,Y,Z)=\det {\begin{bmatrix}\alpha (X)&\alpha (Y)&\alpha (Z)\\\beta (X)&\beta (Y)&\beta (Z)\\\gamma (X)&\gamma (Y)&\gamma (Z)\end{bmatrix}}} ( α 1 ∧ … ∧ α l ) ( X 1 , … , X l ) = det [ α 1 ( X 1 ) α 1 ( X 2 ) … α 1 ( X l ) α 2 ( X 1 ) α 2 ( X 2 ) … α 2 ( X l ) ⋮ ⋮ ⋱ ⋮ α l ( X 1 ) α l ( X 2 ) … α l ( X l ) ] {\displaystyle (\alpha _{1}\wedge \ldots \wedge \alpha _{l})(X_{1},\ldots ,X_{l})=\det {\begin{bmatrix}\alpha _{1}(X_{1})&\alpha _{1}(X_{2})&\dots &\alpha _{1}(X_{l})\\\alpha _{2}(X_{1})&\alpha _{2}(X_{2})&\dots &\alpha _{2}(X_{l})\\\vdots &\vdots &\ddots &\vdots \\\alpha _{l}(X_{1})&\alpha _{l}(X_{2})&\dots &\alpha _{l}(X_{l})\end{bmatrix}}} Projection and rejection [ edit ] ( − 1 ) k ι X ⋆ α = ⋆ ( X ♭ ∧ α ) {\displaystyle (-1)^{k}\iota _{X}{\star }\alpha ={\star }(X^{\flat }\wedge \alpha )} ( interior product ι X ⋆ {\displaystyle \iota _{X}{\star }} dual to wedge X ♭ ∧ {\displaystyle X^{\flat }\wedge } ) ( ι X α ) ∧ ⋆ β = α ∧ ⋆ ( X ♭ ∧ β ) {\displaystyle (\iota _{X}\alpha )\wedge {\star }\beta =\alpha \wedge {\star }(X^{\flat }\wedge \beta )} for α ∈ Ω k + 1 ( M ) , β ∈ Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k+1}(M),\beta \in \Omega ^{k}(M)} If | X | = 1 , α ∈ Ω k ( M ) {\displaystyle |X|=1,\ \alpha \in \Omega ^{k}(M)} , then
ι X ∘ ( X ♭ ∧ ) : Ω k ( M ) → Ω k ( M ) {\displaystyle \iota _{X}\circ (X^{\flat }\wedge ):\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} is the projection of α {\displaystyle \alpha } onto the orthogonal complement of X {\displaystyle X} . ( X ♭ ∧ ) ∘ ι X : Ω k ( M ) → Ω k ( M ) {\displaystyle (X^{\flat }\wedge )\circ \iota _{X}:\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} is the rejection of α {\displaystyle \alpha } , the remainder of the projection. thus ι X ∘ ( X ♭ ∧ ) + ( X ♭ ∧ ) ∘ ι X = id {\displaystyle \iota _{X}\circ (X^{\flat }\wedge )+(X^{\flat }\wedge )\circ \iota _{X}={\text{id}}} ( projection–rejection decomposition ) Given the boundary ∂ M {\displaystyle \partial M} with unit normal vector N {\displaystyle N}
t := ι N ∘ ( N ♭ ∧ ) {\displaystyle \mathbf {t} :=\iota _{N}\circ (N^{\flat }\wedge )} extracts the tangential component of the boundary. n := ( id − t ) {\displaystyle \mathbf {n} :=({\text{id}}-\mathbf {t} )} extracts the normal component of the boundary. ( d α ) ( X 0 , … , X k ) = ∑ 0 ≤ j ≤ k ( − 1 ) j d ( α ( X 0 , … , X ^ j , … , X k ) ) ( X j ) + ∑ 0 ≤ i < j ≤ k ( − 1 ) i + j α ( [ X i , X j ] , X 0 , … , X ^ i , … , X ^ j , … , X k ) {\displaystyle (d\alpha )(X_{0},\ldots ,X_{k})=\sum _{0\leq j\leq k}(-1)^{j}d(\alpha (X_{0},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}))(X_{j})+\sum _{0\leq i<j\leq k}(-1)^{i+j}\alpha ([X_{i},X_{j}],X_{0},\ldots ,{\hat {X}}_{i},\ldots ,{\hat {X}}_{j},\ldots ,X_{k})} ( d α ) ( X 1 , … , X k ) = ∑ i = 1 k ( − 1 ) i + 1 ( ∇ X i α ) ( X 1 , … , X ^ i , … , X k ) {\displaystyle (d\alpha )(X_{1},\ldots ,X_{k})=\sum _{i=1}^{k}(-1)^{i+1}(\nabla _{X_{i}}\alpha )(X_{1},\ldots ,{\hat {X}}_{i},\ldots ,X_{k})} ( δ α ) ( X 1 , … , X k − 1 ) = − ∑ i = 1 n ( ι E i ( ∇ E i α ) ) ( X 1 , … , X ^ i , … , X k ) {\displaystyle (\delta \alpha )(X_{1},\ldots ,X_{k-1})=-\sum _{i=1}^{n}(\iota _{E_{i}}(\nabla _{E_{i}}\alpha ))(X_{1},\ldots ,{\hat {X}}_{i},\ldots ,X_{k})} given a positively oriented orthonormal frame E 1 , … , E n {\displaystyle E_{1},\ldots ,E_{n}} . ( L Y α ) ( X 1 , … , X k ) = ( ∇ Y α ) ( X 1 , … , X k ) − ∑ i = 1 k α ( X 1 , … , ∇ X i Y , … , X k ) {\displaystyle ({\mathcal {L}}_{Y}\alpha )(X_{1},\ldots ,X_{k})=(\nabla _{Y}\alpha )(X_{1},\ldots ,X_{k})-\sum _{i=1}^{k}\alpha (X_{1},\ldots ,\nabla _{X_{i}}Y,\ldots ,X_{k})} Hodge decomposition [ edit ] If ∂ M = ∅ {\displaystyle \partial M=\emptyset } , ω ∈ Ω k ( M ) ⇒ ∃ α ∈ Ω k − 1 , β ∈ Ω k + 1 , γ ∈ Ω k ( M ) , d γ = 0 , δ γ = 0 {\displaystyle \omega \in \Omega ^{k}(M)\Rightarrow \exists \alpha \in \Omega ^{k-1},\ \beta \in \Omega ^{k+1},\ \gamma \in \Omega ^{k}(M),\ d\gamma =0,\ \delta \gamma =0} such that[citation needed ]
ω = d α + δ β + γ {\displaystyle \omega =d\alpha +\delta \beta +\gamma } If a boundaryless manifold M {\displaystyle M} has trivial cohomology H k ( M ) = { 0 } {\displaystyle H^{k}(M)=\{0\}} , then any closed ω ∈ Ω k ( M ) {\displaystyle \omega \in \Omega ^{k}(M)} is exact. This is the case if M is contractible .
Relations to vector calculus [ edit ] Identities in Euclidean 3-space [ edit ] Let Euclidean metric g ( X , Y ) := ⟨ X , Y ⟩ = X ⋅ Y {\displaystyle g(X,Y):=\langle X,Y\rangle =X\cdot Y} .
We use ∇ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) {\displaystyle \nabla =\left({\partial \over \partial x},{\partial \over \partial y},{\partial \over \partial z}\right)} differential operator R 3 {\displaystyle \mathbb {R} ^{3}}
ι X α = g ( X , α ♯ ) = X ⋅ α ♯ {\displaystyle \iota _{X}\alpha =g(X,\alpha ^{\sharp })=X\cdot \alpha ^{\sharp }} for α ∈ Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} . d e t ( X , Y , Z ) = ⟨ X , Y × Z ⟩ = ⟨ X × Y , Z ⟩ {\displaystyle \mathbf {det} (X,Y,Z)=\langle X,Y\times Z\rangle =\langle X\times Y,Z\rangle } ( scalar triple product ) X × Y = ( ⋆ ( X ♭ ∧ Y ♭ ) ) ♯ {\displaystyle X\times Y=({\star }(X^{\flat }\wedge Y^{\flat }))^{\sharp }} ( cross product ) ι X α = − ( X × A ) ♭ {\displaystyle \iota _{X}\alpha =-(X\times A)^{\flat }} if α ∈ Ω 2 ( M ) , A = ( ⋆ α ) ♯ {\displaystyle \alpha \in \Omega ^{2}(M),\ A=({\star }\alpha )^{\sharp }} X ⋅ Y = ⋆ ( X ♭ ∧ ⋆ Y ♭ ) {\displaystyle X\cdot Y={\star }(X^{\flat }\wedge {\star }Y^{\flat })} ( scalar product ) ∇ f = ( d f ) ♯ {\displaystyle \nabla f=(df)^{\sharp }} ( gradient ) X ⋅ ∇ f = d f ( X ) {\displaystyle X\cdot \nabla f=df(X)} ( directional derivative ) ∇ ⋅ X = ⋆ d ⋆ X ♭ = − δ X ♭ {\displaystyle \nabla \cdot X={\star }d{\star }X^{\flat }=-\delta X^{\flat }} ( divergence ) ∇ × X = ( ⋆ d X ♭ ) ♯ {\displaystyle \nabla \times X=({\star }dX^{\flat })^{\sharp }} ( curl ) ⟨ X , N ⟩ σ = ⋆ X ♭ {\displaystyle \langle X,N\rangle \sigma ={\star }X^{\flat }} where N {\displaystyle N} is the unit normal vector of ∂ M {\displaystyle \partial M} and σ = ι N d e t {\displaystyle \sigma =\iota _{N}\mathbf {det} } is the area form on ∂ M {\displaystyle \partial M} . ∫ Σ d ⋆ X ♭ = ∫ ∂ Σ ⋆ X ♭ = ∫ ∂ Σ ⟨ X , N ⟩ σ {\displaystyle \int _{\Sigma }d{\star }X^{\flat }=\int _{\partial \Sigma }{\star }X^{\flat }=\int _{\partial \Sigma }\langle X,N\rangle \sigma } ( divergence theorem ) L X f = X ⋅ ∇ f {\displaystyle {\mathcal {L}}_{X}f=X\cdot \nabla f} ( 0 {\displaystyle 0} -forms ) L X α = ( ∇ X α ♯ ) ♭ + g ( α ♯ , ∇ X ) {\displaystyle {\mathcal {L}}_{X}\alpha =(\nabla _{X}\alpha ^{\sharp })^{\flat }+g(\alpha ^{\sharp },\nabla X)} ( 1 {\displaystyle 1} -forms ) ⋆ L X β = ( ∇ X B − ∇ B X + ( div X ) B ) ♭ {\displaystyle {\star }{\mathcal {L}}_{X}\beta =\left(\nabla _{X}B-\nabla _{B}X+({\text{div}}X)B\right)^{\flat }} if B = ( ⋆ β ) ♯ {\displaystyle B=({\star }\beta )^{\sharp }} ( 2 {\displaystyle 2} -forms on 3 {\displaystyle 3} -manifolds ) ⋆ L X ρ = d q ( X ) + ( div X ) q {\displaystyle {\star }{\mathcal {L}}_{X}\rho =dq(X)+({\text{div}}X)q} if ρ = ⋆ q ∈ Ω 0 ( M ) {\displaystyle \rho ={\star }q\in \Omega ^{0}(M)} ( n {\displaystyle n} -forms ) L X ( d e t ) = ( div ( X ) ) d e t {\displaystyle {\mathcal {L}}_{X}(\mathbf {det} )=({\text{div}}(X))\mathbf {det} } ^ Crane, Keenan; de Goes, Fernando; Desbrun, Mathieu; Schröder, Peter (21 July 2013). "Digital geometry processing with discrete exterior calculus". ACM SIGGRAPH 2013 Courses . pp. 1– 126. doi :10.1145/2504435.2504442 . ISBN 9781450323390 . S2CID 168676 . ^ Schwarz, Günter (1995). Hodge Decomposition – A Method for Solving Boundary Value Problems . Springer. ISBN 978-3-540-49403-4 . ^ Cartan, Henri (26 May 2006). Differential forms (Dover ed.). Dover Publications. ISBN 978-0486450100 . ^ Bott, Raoul; Tu, Loring W. (16 May 1995). Differential forms in algebraic topology . Springer. ISBN 978-0387906133 . ^ Abraham, Ralph; J.E., Marsden; Ratiu, Tudor (6 December 2012). Manifolds, tensor analysis, and applications (2nd ed.). Springer-Verlag. ISBN 978-1-4612-1029-0 . ^ a b Tu, Loring W. (2011). An introduction to manifolds (2nd ed.). New York: Springer. pp. 34, 233. ISBN 9781441974006 . OCLC 682907530 .