File:HornerandNewton.gif

HornerandNewton.gif (500 × 350 pixels, file size: 851 KB, MIME type: image/gif, looped, 109 frames, 22 s)

Summary

Description
Português: Gif mostrando como encontrar raízes de um polinômio usando o método de Newton para aproximar as raízes e o método de horner para fazer deflexões no polinômio.
English: Animation demonstrating how to find the roots of a polynomial using Newton's method and Horner's method together.
Date 20 May 2009 (original upload date)
Source Own work
Author Philten at English Wikipedia
Permission
(Reusing this file)
Public domain This work has been released into the public domain by its author, Philten at English Wikipedia. This applies worldwide.
In some countries this may not be legally possible; if so:
Philten grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Source

Made using GNU Octave and compiled with the GIMP.

clear epsilon = 0.01; a = [1 4 -72 -214 1127 1602 -5040]; color = [0 0 0; 255 0 0; 255 255 0; 0 255 0; 0 0 255; 255 0 255]/255; grad = [fliplr(0:0.1:1) 0:0.1:1]; xlim = [-9 8]; ylim = [-2000 2000]; x0 = 10; x = [xlim(1):.01:xlim(2)]; roots(1) = newton(a,x0,epsilon); b = a; for i = 2:length(a)-1 [y a] = horner(b(i-1,:),roots(i-1)); b(i,:) = [0 a]; roots(i) = newton(b(i,:),roots(i-1),epsilon); endfor b(length(a),:) = b(1,:); for i = 1:length(a) # fancy graphics for j = 1:length(grad) shade = grad(j)*([1 1 1]-color(i,:)); hold off plot(x,polyval(b(i,:),x),'color',color(i,:)+shade,'linewidth',3) hold on plot(x,polyval(b(1,:),x),'color',color(1,:),'linewidth',3) plot(x,zeros(size(x)),'--k','linewidth',3) for k = 1:i-1 plot(roots(k),0,'o','color',color(k,:),'markersize',1,'linewidth',3) endfor if j < length(grad)/2 plot(roots(i),0,'o','color',color(i,:)+shade,'markersize',1,'linewidth',3) else plot(roots(i),0,'o','color',color(i,:),'markersize',1,'linewidth',3) endif axis([xlim ylim]) print(strcat("frame",num2str(j+length(grad)*(i-1)),".eps")) endfor endfor 
function z = newton(a,x0,epsilon) x1 = epsilon*2+x0; loops = 0; for i = 1:length(a)-1 b(i) = a(i)*(length(a)-i); endfor while abs(x0-x1) > epsilon && loops < 500 x0 = x1; f = horner(a,x0); fp = horner(b,x0); x1 = x0 - f/fp; loops++; endwhile z = x1; endfunction 
function [y b] = horner(a,x) b(1) = a(1); for i = 2:length(a) b(i) = a(i)+x*b(i-1); endfor y = b(length(a)); b = b(1:length(b)-1); endfunction 

Original upload log

The original description page was here. All following user names refer to en.wikipedia.
  • 2009-05-20 01:30 Philten 500×350× (871553 bytes) made using GNU Octave and compiled with the GIMP clear epsilon = 0.01; a = [1 4 -72 -214 1127 1602 -5040]; color = [0 0 0; 255 0 0; 255 255 0; 0 255 0; 0 0 255; 255 0 255]/255; grad = [fliplr(0:0.1:1) 0:0.1:1]; xlim = [-9 8]; ylim = [-2000 2000];

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

20 May 2009

image/gif

871,553 byte

350 pixel

500 pixel

ecf07712934cb12d293180b93115d6fac4e266c4

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current15:42, 1 June 2013Thumbnail for version as of 15:42, 1 June 2013500 × 350 (851 KB)OgreBot(BOT): Uploading old version of file from en.wikipedia; originally uploaded on 2009-05-20 01:30:29 by Philten
06:07, 27 May 2013Thumbnail for version as of 06:07, 27 May 2013225 × 158 (382 KB)Mvsosorio{{Information |Description ={{en|1=http://en.wikipedia.org/wiki/Horner_scheme}} {{pt|1=http://en.wikipedia.org/wiki/Horner_scheme Gif mostrando como encontrar raízes de um polinômio usando o método de Newton para aproximar as raízes e o método ...

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata