File:Regressions sine demo.svg

Original file (SVG file, nominally 900 × 450 pixels, file size: 582 KB)

Summary

Description
English: Predictions over a perturbed sine curve with various learning models, e.g., GPR, KRR, SVR. The plot was prepared using scikit-learn.
Date
Source Own work
 
This W3C-unspecified plot was created with Matplotlib.
Author Shiyu Ji

Python 3 Source Code

# Note: the original version of this demo is in sklearn doc: # http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_compare_gpr_krr.html # http://scikit-learn.org/stable/auto_examples/plot_kernel_ridge_regression.html # Authors: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause  import time  import numpy as np import matplotlib matplotlib.use('svg') import matplotlib.pyplot as plt  from sklearn.svm import SVR from sklearn.kernel_ridge import KernelRidge from sklearn.model_selection import GridSearchCV from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared  rng = np.random.RandomState(0)  # Generate sample data X = 15 * rng.rand(100, 1) y = np.sin(X).ravel() y[::2] += rng.normal(scale = 1.0, size = X.shape[0] // 2)  # add noise  # Fit KernelRidge with param selection param_grid_kr = {"alpha": [1e-1, 1e-2, 1e-3],               "kernel": [ExpSineSquared(l, p)                          for l in np.logspace(-2, 2, 10)                          for p in np.logspace(0, 2, 10)]} kr = GridSearchCV(KernelRidge(), cv=5, param_grid=param_grid_kr) stime = time.time() kr.fit(X, y) print("Time for KRR fitting: %.3f" % (time.time() - stime))  # Fit GPR gp_kernel = ExpSineSquared(1.0, 5.0, \              periodicity_bounds=(1e-2, 1e1)) \              + WhiteKernel(1e-1) gpr = GaussianProcessRegressor(kernel=gp_kernel) stime = time.time() gpr.fit(X, y) print("Time for GPR fitting: %.3f" % (time.time() - stime))  # Fit SVR svr = SVR(kernel="rbf", C=1, gamma=1) stime = time.time() svr.fit(X, y) print("Time for SVR fitting: %.3f" % (time.time() - stime))  # Predict using kernel ridge X_plot = np.linspace(0, 20, 10000)[:, None] stime = time.time() y_kr = kr.predict(X_plot) print("Time for KRR prediction: %.3f" % (time.time() - stime))  # Predict using Gaussian process stime = time.time() y_gpr = gpr.predict(X_plot, return_std=False) print("Time for GPR prediction: %.3f" % (time.time() - stime))  stime = time.time() y_gpr, y_std = gpr.predict(X_plot, return_std=True) print("Time for GPR prediction with standard-deviation: %.3f"       % (time.time() - stime))  # Predict using SVR stime = time.time() y_svr = svr.predict(X_plot) print("Time for SVR prediction: %.3f" % (time.time() - stime))  # Plot results plt.figure(figsize=(10, 5)) lw = 2 plt.scatter(X, y, c='k', label='Data') plt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True') plt.plot(X_plot, y_svr, color='red', lw=lw, label='SVR (kernel=%s, C=%s, gamma=%s)' % (svr.get_params()['kernel'], svr.get_params()['C'], svr.get_params()['gamma'])) plt.plot(X_plot, y_kr, color='turquoise', lw=lw,          label='KRR (%s)' % kr.best_params_) plt.plot(X_plot, y_gpr, color='darkorange', lw=lw,          label='GPR (%s)' % gpr.kernel_) plt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange',                  alpha=0.2) plt.xlabel('data') plt.ylabel('target') plt.xlim(0, 20) plt.ylim(-3, 5) plt.title('GPR v.s. Kernel Ridge v.s. SVR') plt.legend(loc="best",  scatterpoints=1, prop={'size': 8})  plt.savefig('regressions_sine_demo.svg', format='svg') 

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

3 July 2017

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:57, 3 July 2017Thumbnail for version as of 19:57, 3 July 2017900 × 450 (582 KB)Shiyu JiUser created page with UploadWizard

Global file usage

The following other wikis use this file:

Metadata