Mathematical constant
In mathematics , the Glaisher–Kinkelin constant or Glaisher's constant , typically denoted A , is a mathematical constant , related to special functions like the K -function and the Barnes G -function . The constant also appears in a number of sums and integrals , especially those involving the gamma function and the Riemann zeta function . It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin .
Its approximate value is:
A = 1.282427 129 100 622 636 87 ... (sequence A074962 in the OEIS ). Glaisher's constant plays a role both in mathematics and in physics . It appears when giving a closed form expression for Porter's constant , when estimating the efficiency of the Euclidean algorithm . It also is connected to solutions of Painlevé differential equations and the Gaudin model .[ 1]
The Glaisher–Kinkelin constant A can be defined via the following limit :[ 2]
A = lim n → ∞ H ( n ) n n 2 2 + n 2 + 1 12 e − n 2 4 {\displaystyle A=\lim _{n\rightarrow \infty }{\frac {H(n)}{n^{{\tfrac {n^{2}}{2}}+{\tfrac {n}{2}}+{\tfrac {1}{12}}}\,e^{-{\tfrac {n^{2}}{4}}}}}} where H ( n ) {\displaystyle H(n)} is the hyperfactorial : H ( n ) = ∏ i = 1 n i i = 1 1 ⋅ 2 2 ⋅ 3 3 ⋅ . . . ⋅ n n {\displaystyle H(n)=\prod _{i=1}^{n}i^{i}=1^{1}\cdot 2^{2}\cdot 3^{3}\cdot {...}\cdot n^{n}} An analogous limit, presenting a similarity between A {\displaystyle A} and 2 π {\displaystyle {\sqrt {2\pi }}} , is given by Stirling's formula as:
2 π = lim n → ∞ n ! n n + 1 2 e − n {\displaystyle {\sqrt {2\pi }}=\lim _{n\to \infty }{\frac {n!}{n^{n+{\frac {1}{2}}}\,e^{-n}}}} with n ! = ∏ i = 1 n i = 1 ⋅ 2 ⋅ 3 ⋅ . . . ⋅ n {\displaystyle n!=\prod _{i=1}^{n}i=1\cdot 2\cdot 3\cdot {...}\cdot n} which shows that just as π is obtained from approximation of the factorials , A is obtained from the approximation of the hyperfactorials.
Relation to special functions [ edit ] Just as the factorials can be extended to the complex numbers by the gamma function such that Γ ( n ) = ( n − 1 ) ! {\displaystyle \Gamma (n)=(n-1)!} for positive integers n , the hyperfactorials can be extended by the K-function [ 3] with K ( n ) = H ( n − 1 ) {\displaystyle K(n)=H(n-1)} also for positive integers n , where:
K ( z ) = ( 2 π ) − z − 1 2 exp [ ( z 2 ) + ∫ 0 z − 1 ln Γ ( t + 1 ) d t ] {\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1)\,dt\right]} This gives:[ 1]
A = lim n → ∞ K ( n + 1 ) n n 2 2 + n 2 + 1 12 e − n 2 4 {\displaystyle A=\lim _{n\rightarrow \infty }{\frac {K(n+1)}{n^{{\tfrac {n^{2}}{2}}+{\tfrac {n}{2}}+{\tfrac {1}{12}}}\,e^{-{\tfrac {n^{2}}{4}}}}}} . A related function is the Barnes G -function which is given by
G ( n ) = ( Γ ( n ) ) n − 1 K ( n ) {\displaystyle G(n)={\frac {(\Gamma (n))^{n-1}}{K(n)}}} and for which a similar limit exists:[ 2]
1 A = lim n → ∞ G ( n + 1 ) ( 2 π ) n 2 n n 2 2 − 1 12 e − 3 n 2 4 + 1 12 {\displaystyle {\frac {1}{A}}=\lim _{n\rightarrow \infty }{\frac {G(n+1)}{\left(2\pi \right)^{\frac {n}{2}}n^{{\frac {n^{2}}{2}}-{\frac {1}{12}}}e^{-{\frac {3n^{2}}{4}}+{\frac {1}{12}}}}}} . The Glaisher-Kinkelin constant also appears in the evaluation of the K-function and Barnes-G function at half and quarter integer values such as:[ 1] [ 4]
K ( 1 / 2 ) = A 3 / 2 2 1 / 24 e 1 / 8 {\displaystyle K(1/2)={\frac {A^{3/2}}{2^{1/24}e^{1/8}}}} K ( 1 / 4 ) = A 9 / 8 exp ( G 4 π − 3 32 ) {\displaystyle K(1/4)=A^{9/8}\exp \left({\frac {G}{4\pi }}-{\frac {3}{32}}\right)} G ( 1 / 2 ) = 2 1 / 24 e 1 / 8 A 3 / 2 π 1 / 4 {\displaystyle G(1/2)={\frac {2^{1/24}e^{1/8}}{A^{3/2}\pi ^{1/4}}}} G ( 1 / 4 ) = 1 2 9 / 16 A 9 / 8 π 3 / 16 ϖ 3 / 8 exp ( 3 32 − G 4 π ) {\displaystyle G(1/4)={\frac {1}{2^{9/16}A^{9/8}\pi ^{3/16}\varpi ^{3/8}}}\exp \left({\frac {3}{32}}-{\frac {G}{4\pi }}\right)} with G {\displaystyle G} being Catalan's constant and ϖ = Γ ( 1 / 4 ) 2 2 2 π {\displaystyle \varpi ={\frac {\Gamma (1/4)^{2}}{2{\sqrt {2\pi }}}}} being the lemniscate constant .
Similar to the gamma function , there exists a multiplication formula for the K-Function. It involves Glaisher's constant:[ 5]
∏ j = 1 n − 1 K ( j n ) = A n 2 − 1 n n − 1 12 n e 1 − n 2 12 n {\displaystyle \prod _{j=1}^{n-1}K\left({\frac {j}{n}}\right)=A^{\frac {n^{2}-1}{n}}n^{-{\frac {1}{12n}}}e^{\frac {1-n^{2}}{12n}}} The logarithm of G (z + 1) has the following asymptotic expansion , as established by Barnes:[ 6]
ln G ( z + 1 ) = z 2 2 ln z − 3 z 2 4 + z 2 ln 2 π − 1 12 ln z + ( 1 12 − ln A ) + ∑ k = 1 N B 2 k + 2 4 k ( k + 1 ) z 2 k + O ( 1 z 2 N + 2 ) {\displaystyle \ln G(z+1)={\frac {z^{2}}{2}}\ln z-{\frac {3z^{2}}{4}}+{\frac {z}{2}}\ln 2\pi -{\frac {1}{12}}\ln z+\left({\frac {1}{12}}-\ln A\right)+\sum _{k=1}^{N}{\frac {B_{2k+2}}{4k\left(k+1\right)z^{2k}}}+O\left({\frac {1}{z^{2N+2}}}\right)} The Glaisher-Kinkelin constant is related to the derivatives of the Euler-constant function :[ 5] [ 7]
γ ′ ( − 1 ) = 11 6 ln 2 + 6 ln A − 3 2 ln π − 1 {\displaystyle \gamma '(-1)={\frac {11}{6}}\ln 2+6\ln A-{\frac {3}{2}}\ln \pi -1} γ ″ ( − 1 ) = 10 3 ln 2 + 24 ln A − 4 ln π − 7 ζ ( 3 ) 2 π 2 − 13 4 {\displaystyle \gamma ''(-1)={\frac {10}{3}}\ln 2+24\ln A-4\ln \pi -{\frac {7\zeta (3)}{2\pi ^{2}}}-{\frac {13}{4}}} A {\displaystyle A} also is related to the Lerch transcendent :[ 8]
∂ Φ ∂ s ( − 1 , − 1 , 1 ) = 3 ln A − 1 3 ln 2 − 1 4 {\displaystyle {\frac {\partial \Phi }{\partial s}}(-1,-1,1)=3\ln A-{\frac {1}{3}}\ln 2-{\frac {1}{4}}} Glaisher's constant may be used to give values of the derivative of the Riemann zeta function as closed form expressions, such as:[ 2] [ 9]
ζ ′ ( − 1 ) = 1 12 − ln A {\displaystyle \zeta '(-1)={\frac {1}{12}}-\ln A} ζ ′ ( 2 ) = π 2 6 ( γ + ln 2 π − 12 ln A ) {\displaystyle \zeta '(2)={\frac {\pi ^{2}}{6}}\left(\gamma +\ln 2\pi -12\ln A\right)} where γ is the Euler–Mascheroni constant .
The above formula for ζ ′ ( 2 ) {\displaystyle \zeta '(2)} gives the following series:[ 2]
∑ k = 2 ∞ ln k k 2 = π 2 6 ( 12 ln A − γ − ln 2 π ) {\displaystyle \sum _{k=2}^{\infty }{\frac {\ln k}{k^{2}}}={\frac {\pi ^{2}}{6}}\left(12\ln A-\gamma -\ln 2\pi \right)} which directly leads to the following product found by Glaisher :
∏ k = 1 ∞ k 1 k 2 = ( A 12 2 π e γ ) π 2 6 {\displaystyle \prod _{k=1}^{\infty }k^{\frac {1}{k^{2}}}=\left({\frac {A^{12}}{2\pi e^{\gamma }}}\right)^{\frac {\pi ^{2}}{6}}} Similarly it is
∑ k ≥ 3 k odd ln k k 2 = π 2 24 ( 36 ln A − 3 γ − ln 16 π 3 ) {\displaystyle \sum _{k\geq 3}^{k{\text{ odd}}}{\frac {\ln k}{k^{2}}}={\frac {\pi ^{2}}{24}}\left(36\ln A-3\gamma -\ln 16\pi ^{3}\right)} which gives:
∏ k ≥ 3 k odd k 1 k 2 = ( A 36 16 π 3 e 3 γ ) π 2 24 {\displaystyle \prod _{k\geq 3}^{k{\text{ odd}}}k^{\frac {1}{k^{2}}}=\left({\frac {A^{36}}{16\pi ^{3}e^{3\gamma }}}\right)^{\frac {\pi ^{2}}{24}}} An alternative product formula, defined over the prime numbers , reads:[ 10]
∏ p prime p 1 p 2 − 1 = A 12 2 π e γ , {\displaystyle \prod _{p{\text{ prime}}}p^{\frac {1}{p^{2}-1}}={\frac {A^{12}}{2\pi e^{\gamma }}},} Another product is given by:[ 5]
∏ k = 1 ∞ ( e n n ( n + 1 ) n ) ( − 1 ) n − 1 = 2 1 / 6 e π A 6 {\displaystyle \prod _{k=1}^{\infty }\left({\frac {en^{n}}{(n+1)^{n}}}\right)^{(-1)^{n-1}}={\frac {2^{1/6}e{\sqrt {\pi }}}{A^{6}}}} A series involving the cosine integral is:[ 11]
∑ k = 1 ∞ Ci ( 2 k π ) k 2 = π 2 2 ( 4 ln A − 1 ) {\displaystyle \sum _{k=1}^{\infty }{\frac {{\text{Ci}}(2k\pi )}{k^{2}}}={\frac {\pi ^{2}}{2}}(4\ln A-1)} Helmut Hasse gave another series representation for the logarithm of Glaisher's constant, following from a series for the Riemann zeta function:[ 8]
ln A = 1 8 − 1 2 ∑ n = 0 ∞ 1 n + 1 ∑ k = 0 n ( − 1 ) k ( n k ) ( k + 1 ) 2 ln ( k + 1 ) {\displaystyle \ln A={\frac {1}{8}}-{\frac {1}{2}}\sum _{n=0}^{\infty }{\frac {1}{n+1}}\sum _{k=0}^{n}(-1)^{k}{\binom {n}{k}}(k+1)^{2}\ln(k+1)} The following are some definite integrals involving Glaisher's constant:[ 1]
∫ 0 ∞ x ln x e 2 π x − 1 d x = 1 24 − 1 2 ln A {\displaystyle \int _{0}^{\infty }{\frac {x\ln x}{e^{2\pi x}-1}}\,dx={\frac {1}{24}}-{\frac {1}{2}}\ln A} ∫ 0 1 2 ln Γ ( x ) d x = 3 2 ln A + 5 24 ln 2 + 1 4 ln π {\displaystyle \int _{0}^{\frac {1}{2}}\ln \Gamma (x)\,dx={\frac {3}{2}}\ln A+{\frac {5}{24}}\ln 2+{\frac {1}{4}}\ln \pi } the latter being a special case of:[ 12]
∫ 0 z ln Γ ( x ) d x = z ( 1 − z ) 2 + z 2 ln 2 π + z ln Γ ( z ) − ln G ( 1 + z ) {\displaystyle \int _{0}^{z}\ln \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\ln 2\pi +z\ln \Gamma (z)-\ln G(1+z)} We further have:[ 13] ∫ 0 ∞ ( 1 − e − x / 2 ) ( x coth x 2 − 2 ) x 3 d x = 3 ln A − 1 3 ln 2 − 1 8 {\displaystyle \int _{0}^{\infty }{\frac {(1-e^{-x/2})(x\coth {\tfrac {x}{2}}-2)}{x^{3}}}dx=3\ln A-{\frac {1}{3}}\ln 2-{\frac {1}{8}}} and ∫ 0 ∞ ( 8 − 3 x ) e x − 8 e x / 2 − x 4 x 2 e x ( e x − 1 ) d x = 3 ln A − 7 12 ln 2 + 1 2 ln π − 1 {\displaystyle \int _{0}^{\infty }{\frac {(8-3x)e^{x}-8e^{x/2}-x}{4x^{2}e^{x}(e^{x}-1)}}dx=3\ln A-{\frac {7}{12}}\ln 2+{\frac {1}{2}}\ln \pi -1} A double integral is given by:[ 8]
∫ 0 1 ∫ 0 1 − x ( 1 + x y ) 2 ln x y d x d y = 6 ln A − 1 6 ln 2 − 1 2 ln π − 1 2 {\displaystyle \int _{0}^{1}\int _{0}^{1}{\frac {-x}{(1+xy)^{2}\ln xy}}dxdy=6\ln A-{\frac {1}{6}}\ln 2-{\frac {1}{2}}\ln \pi -{\frac {1}{2}}} The Glaisher-Kinkelin constant can be viewed as the first constant in a sequence of infinitely many so-called generalized Glaisher constants or Bendersky constants .[ 1] They emerge from studying the following product: ∏ m = 1 n m m k = 1 1 k ⋅ 2 2 k ⋅ 3 3 k ⋅ . . . ⋅ n n k {\displaystyle \prod _{m=1}^{n}m^{m^{k}}=1^{1^{k}}\cdot 2^{2^{k}}\cdot 3^{3^{k}}\cdot {...}\cdot n^{n^{k}}} Setting k = 0 {\displaystyle k=0} gives the factorial n ! {\displaystyle n!} , while choosing k = 1 {\displaystyle k=1} gives the hyperfactorial H ( n ) {\displaystyle H(n)} .
Defining the following function P k ( n ) = ( n k + 1 k + 1 + n k 2 + B k + 1 k + 1 ) ln n − n k + 1 ( k + 1 ) 2 + k ! ∑ j = 1 k − 1 B j + 1 ( j + 1 ) ! n k − j ( k − j ) ! ( ln n + ∑ i = 1 j 1 k − i + 1 ) {\displaystyle P_{k}(n)=\left({\frac {n^{k+1}}{k+1}}+{\frac {n^{k}}{2}}+{\frac {B_{k+1}}{k+1}}\right)\ln n-{\frac {n^{k+1}}{(k+1)^{2}}}+k!\sum _{j=1}^{k-1}{\frac {B_{j+1}}{(j+1)!}}{\frac {n^{k-j}}{(k-j)!}}\left(\ln n+\sum _{i=1}^{j}{\frac {1}{k-i+1}}\right)} with the Bernoulli numbers B k {\displaystyle B_{k}} (and using B 1 = 0 {\displaystyle B_{1}=0} ), one may approximate the above products asymptotically via exp ( P k ( n ) ) {\displaystyle \exp({P_{k}(n)})} .
For k = 0 {\displaystyle k=0} we get Stirling's approximation without the factor 2 π {\displaystyle {\sqrt {2\pi }}} as exp ( P 0 ( n ) ) = n n + 1 2 e − n {\displaystyle \exp({P_{0}(n)})=n^{n+{\frac {1}{2}}}e^{-n}} .
For k = 1 {\displaystyle k=1} we obtain exp ( P 1 ( n ) ) = n n 2 2 + n 2 + 1 12 e − n 2 4 {\displaystyle \exp({P_{1}(n)})=n^{{\tfrac {n^{2}}{2}}+{\tfrac {n}{2}}+{\tfrac {1}{12}}}\,e^{-{\tfrac {n^{2}}{4}}}} , similar as in the limit definition of A {\displaystyle A} .
This leads to the following definition of the generalized Glaisher constants:
A k := lim n → ∞ ( e − P k ( n ) ∏ m = 1 n m m k ) {\displaystyle A_{k}:=\lim _{n\rightarrow \infty }\left(e^{-P_{k}(n)}\prod _{m=1}^{n}m^{m^{k}}\right)} which may also be written as:
ln A k := lim n → ∞ ( − P k ( n ) + ∑ m = 1 n m k ln m ) {\displaystyle \ln A_{k}:=\lim _{n\rightarrow \infty }\left(-P_{k}(n)+\sum _{m=1}^{n}{m^{k}}\ln m\right)} This gives A 0 = 2 π {\displaystyle A_{0}={\sqrt {2\pi }}} and A 1 = A {\displaystyle A_{1}=A} and in general:[ 1] [ 14] [ 15]
A k = exp ( B k + 1 k + 1 H k − ζ ′ ( − k ) ) {\displaystyle A_{k}=\exp \left({\frac {B_{k+1}}{k+1}}H_{k}-\zeta '(-k)\right)} with the harmonic numbers H k {\displaystyle H_{k}} and H 0 = 0 {\displaystyle H_{0}=0} .
Because of the formula
ζ ′ ( − 2 m ) = ( − 1 ) m ( 2 m ) ! 2 ( 2 π ) 2 m ζ ( 2 m + 1 ) {\displaystyle \zeta '(-2m)=(-1)^{m}{\frac {(2m)!}{2(2\pi )^{2m}}}\zeta (2m+1)} for m > 0 {\displaystyle m>0} , there exist closed form expressions for A k {\displaystyle A_{k}} with even k = 2 m {\displaystyle k=2m} in terms of the values of the Riemann zeta function such as:[ 1]
A 2 = exp ( ζ ( 3 ) 4 π 2 ) {\displaystyle A_{2}=\exp \left({\frac {\zeta (3)}{4\pi ^{2}}}\right)} A 4 = exp ( − 3 ζ ( 5 ) 4 π 4 ) {\displaystyle A_{4}=\exp \left(-{\frac {3\zeta (5)}{4\pi ^{4}}}\right)} For odd k = 2 m − 1 {\displaystyle k=2m-1} one can express the constants A k {\displaystyle A_{k}} in terms of the derivative of the Riemann zeta function such as:
A 1 = exp ( − ζ ′ ( 2 ) 2 π 2 + γ + ln 2 π 12 ) {\displaystyle A_{1}=\exp \left(-{\frac {\zeta '(2)}{2\pi ^{2}}}+{\frac {\gamma +\ln 2\pi }{12}}\right)} A 3 = exp ( 3 ζ ′ ( 4 ) 4 π 4 − γ + ln 2 π 120 ) {\displaystyle A_{3}=\exp \left({\frac {3\zeta '(4)}{4\pi ^{4}}}-{\frac {\gamma +\ln 2\pi }{120}}\right)} The numerical values of the first few generalized Glaisher constants are given below:
k Value of Ak to 50 decimal digits OEIS 0 2.50662827463100050241576528481104525300698674060993... A019727 1 1.28242712910062263687534256886979172776768892732500... A074962 2 1.03091675219739211419331309646694229063319430640348... A243262 3 0.97955552694284460582421883726349182644553675249552... A243263 4 0.99204797452504026001343697762544335673690485127618... A243264 5 1.00968038728586616112008919046263069260327634721152... A243265 6 1.00591719699867346844401398355425565639061565500693... A266553 7 0.98997565333341709417539648305886920020824715143074... A266554 8 0.99171832163282219699954748276579333986785976057305... A266555 9 1.01846992992099291217065904937667217230861019056407... A266556 10 1.01911023332938385372216470498629751351348137284099... A266557
^ a b c d e f g Finch, Steven R. (2003-08-18). Mathematical Constants . Cambridge University Press. ISBN 978-0-521-81805-6 . ^ a b c d Weisstein, Eric W. "Glaisher-Kinkelin Constant" . mathworld.wolfram.com . Retrieved 2024-10-05 . ^ Weisstein, Eric W. "K-Function" . mathworld.wolfram.com . Retrieved 2024-10-05 . ^ Weisstein, Eric W. "Barnes G-Function" . mathworld.wolfram.com . Retrieved 2024-10-05 . ^ a b c Sondow, Jonathan; Hadjicostas, Petros (2006-10-16). "The generalized-Euler-constant function γ ( z ) {\displaystyle \gamma (z)} and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications . 332 : 292– 314. arXiv :math/0610499 . doi :10.1016/j.jmaa.2006.09.081 . ^ E. T. Whittaker and G. N. Watson , "A Course of Modern Analysis ", CUP. ^ Pilehrood, Khodabakhsh Hessami; Pilehrood, Tatiana Hessami (2008-08-04). "Vacca-type series for values of the generalized-Euler-constant function and its derivative". arXiv :0808.0410 [math.NT ]. ^ a b c Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16 (3): 247– 270. arXiv :math/0506319 . doi :10.1007/s11139-007-9102-0 . ISSN 1382-4090 . ^ Weisstein, Eric W. "Riemann Zeta Function" . mathworld.wolfram.com . Retrieved 2024-10-05 . ^ Van Gorder, Robert A. (2012). "Glaisher-Type Products over the Primes". International Journal of Number Theory . 08 (2): 543– 550. doi :10.1142/S1793042112500297 . ^ Pain, Jean-Christophe (2023-04-15). "Series representations for the logarithm of the Glaisher-Kinkelin constant". arXiv :2304.07629 [math.NT ]. ^ Adamchik, V. S. (2003-08-08). "Contributions to the Theory of the Barnes Function". arXiv :math/0308086 . ^ Pain, Jean-Christophe (2024-04-22). "Two integral representations for the logarithm of the Glaisher-Kinkelin constant". arXiv :2405.05264 [math.GM ]. ^ Choudhury, Bejoy K. (1995). "The Riemann Zeta-Function and Its Derivatives" . Proceedings: Mathematical and Physical Sciences . 450 (1940): 477– 499. doi :10.1098/rspa.1995.0096 . ISSN 0962-8444 . JSTOR 52768 . ^ Adamchik, Victor S. (1998-12-21). "Polygamma functions of negative order" . Journal of Computational and Applied Mathematics . 100 (2): 191– 199. doi :10.1016/S0377-0427(98)00192-7 . ISSN 0377-0427 .