In mathematics , more specifically, in convex geometry , the mixed volume is a way to associate a non-negative number to a tuple of convex bodies in R n {\displaystyle \mathbb {R} ^{n}} . This number depends on the size and shape of the bodies, and their relative orientation to each other.
Let K 1 , K 2 , … , K r {\displaystyle K_{1},K_{2},\dots ,K_{r}} be convex bodies in R n {\displaystyle \mathbb {R} ^{n}} and consider the function
f ( λ 1 , … , λ r ) = V o l n ( λ 1 K 1 + ⋯ + λ r K r ) , λ i ≥ 0 , {\displaystyle f(\lambda _{1},\ldots ,\lambda _{r})=\mathrm {Vol} _{n}(\lambda _{1}K_{1}+\cdots +\lambda _{r}K_{r}),\qquad \lambda _{i}\geq 0,} where Vol n {\displaystyle {\text{Vol}}_{n}} stands for the n {\displaystyle n} -dimensional volume, and its argument is the Minkowski sum of the scaled convex bodies K i {\displaystyle K_{i}} . One can show that f {\displaystyle f} is a homogeneous polynomial of degree n {\displaystyle n} , so can be written as
f ( λ 1 , … , λ r ) = ∑ j 1 , … , j n = 1 r V ( K j 1 , … , K j n ) λ j 1 ⋯ λ j n , {\displaystyle f(\lambda _{1},\ldots ,\lambda _{r})=\sum _{j_{1},\ldots ,j_{n}=1}^{r}V(K_{j_{1}},\ldots ,K_{j_{n}})\lambda _{j_{1}}\cdots \lambda _{j_{n}},} where the functions V {\displaystyle V} are symmetric. For a particular index function j ∈ { 1 , … , r } n {\displaystyle j\in \{1,\ldots ,r\}^{n}} , the coefficient V ( K j 1 , … , K j n ) {\displaystyle V(K_{j_{1}},\dots ,K_{j_{n}})} is called the mixed volume of K j 1 , … , K j n {\displaystyle K_{j_{1}},\dots ,K_{j_{n}}} .
The mixed volume is uniquely determined by the following three properties: V ( K , … , K ) = Vol n ( K ) {\displaystyle V(K,\dots ,K)={\text{Vol}}_{n}(K)} ; V {\displaystyle V} is symmetric in its arguments; V {\displaystyle V} is multilinear: V ( λ K + λ ′ K ′ , K 2 , … , K n ) = λ V ( K , K 2 , … , K n ) + λ ′ V ( K ′ , K 2 , … , K n ) {\displaystyle V(\lambda K+\lambda 'K',K_{2},\dots ,K_{n})=\lambda V(K,K_{2},\dots ,K_{n})+\lambda 'V(K',K_{2},\dots ,K_{n})} for λ , λ ′ ≥ 0 {\displaystyle \lambda ,\lambda '\geq 0} . The mixed volume is non-negative and monotonically increasing in each variable: V ( K 1 , K 2 , … , K n ) ≤ V ( K 1 ′ , K 2 , … , K n ) {\displaystyle V(K_{1},K_{2},\ldots ,K_{n})\leq V(K_{1}',K_{2},\ldots ,K_{n})} for K 1 ⊆ K 1 ′ {\displaystyle K_{1}\subseteq K_{1}'} . The Alexandrov–Fenchel inequality, discovered by Aleksandr Danilovich Aleksandrov and Werner Fenchel : V ( K 1 , K 2 , K 3 , … , K n ) ≥ V ( K 1 , K 1 , K 3 , … , K n ) V ( K 2 , K 2 , K 3 , … , K n ) . {\displaystyle V(K_{1},K_{2},K_{3},\ldots ,K_{n})\geq {\sqrt {V(K_{1},K_{1},K_{3},\ldots ,K_{n})V(K_{2},K_{2},K_{3},\ldots ,K_{n})}}.} Numerous geometric inequalities, such as the Brunn–Minkowski inequality for convex bodies and Minkowski's first inequality , are special cases of the Alexandrov–Fenchel inequality. Let K ⊂ R n {\displaystyle K\subset \mathbb {R} ^{n}} be a convex body and let B = B n ⊂ R n {\displaystyle B=B_{n}\subset \mathbb {R} ^{n}} be the Euclidean ball of unit radius. The mixed volume
W j ( K ) = V ( K , K , … , K ⏞ n − j times , B , B , … , B ⏞ j times ) {\displaystyle W_{j}(K)=V({\overset {n-j{\text{ times}}}{\overbrace {K,K,\ldots ,K} }},{\overset {j{\text{ times}}}{\overbrace {B,B,\ldots ,B} }})} is called the j -th quermassintegral of K {\displaystyle K} .[ 1]
The definition of mixed volume yields the Steiner formula (named after Jakob Steiner ):
V o l n ( K + t B ) = ∑ j = 0 n ( n j ) W j ( K ) t j . {\displaystyle \mathrm {Vol} _{n}(K+tB)=\sum _{j=0}^{n}{\binom {n}{j}}W_{j}(K)t^{j}.} The j -th intrinsic volume of K {\displaystyle K} is a different normalization of the quermassintegral, defined by
V j ( K ) = ( n j ) W n − j ( K ) κ n − j , {\displaystyle V_{j}(K)={\binom {n}{j}}{\frac {W_{n-j}(K)}{\kappa _{n-j}}},} or in other words V o l n ( K + t B ) = ∑ j = 0 n V j ( K ) V o l n − j ( t B n − j ) = ∑ j = 0 n V j ( K ) κ n − j t n − j . {\displaystyle \mathrm {Vol} _{n}(K+tB)=\sum _{j=0}^{n}V_{j}(K)\,\mathrm {Vol} _{n-j}(tB_{n-j})=\sum _{j=0}^{n}V_{j}(K)\,\kappa _{n-j}t^{n-j}.} where κ n − j = Vol n − j ( B n − j ) {\displaystyle \kappa _{n-j}={\text{Vol}}_{n-j}(B_{n-j})} is the volume of the ( n − j ) {\displaystyle (n-j)} -dimensional unit ball.
Hadwiger's characterization theorem[ edit ] Hadwiger's theorem asserts that every valuation on convex bodies in R n {\displaystyle \mathbb {R} ^{n}} that is continuous and invariant under rigid motions of R n {\displaystyle \mathbb {R} ^{n}} is a linear combination of the quermassintegrals (or, equivalently, of the intrinsic volumes).[ 2]
Burago, Yu.D. (2001) [1994], "Mixed-volume theory" , Encyclopedia of Mathematics , EMS Press