In mathematics, a Jackson q -Bessel function (or basic Bessel function ) is one of the three q -analogs of the Bessel function introduced by Jackson (1906a , 1906b , 1905a , 1905b ). The third Jackson q -Bessel function is the same as the Hahn–Exton q -Bessel function .
The three Jackson q -Bessel functions are given in terms of the q -Pochhammer symbol and the basic hypergeometric function ϕ {\displaystyle \phi } by
J ν ( 1 ) ( x ; q ) = ( q ν + 1 ; q ) ∞ ( q ; q ) ∞ ( x / 2 ) ν 2 ϕ 1 ( 0 , 0 ; q ν + 1 ; q , − x 2 / 4 ) , | x | < 2 , {\displaystyle J_{\nu }^{(1)}(x;q)={\frac {(q^{\nu +1};q)_{\infty }}{(q;q)_{\infty }}}(x/2)^{\nu }{}_{2}\phi _{1}(0,0;q^{\nu +1};q,-x^{2}/4),\quad |x|<2,} J ν ( 2 ) ( x ; q ) = ( q ν + 1 ; q ) ∞ ( q ; q ) ∞ ( x / 2 ) ν 0 ϕ 1 ( ; q ν + 1 ; q , − x 2 q ν + 1 / 4 ) , x ∈ C , {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(q^{\nu +1};q)_{\infty }}{(q;q)_{\infty }}}(x/2)^{\nu }{}_{0}\phi _{1}(;q^{\nu +1};q,-x^{2}q^{\nu +1}/4),\quad x\in \mathbb {C} ,} J ν ( 3 ) ( x ; q ) = ( q ν + 1 ; q ) ∞ ( q ; q ) ∞ ( x / 2 ) ν 1 ϕ 1 ( 0 ; q ν + 1 ; q , q x 2 / 4 ) , x ∈ C . {\displaystyle J_{\nu }^{(3)}(x;q)={\frac {(q^{\nu +1};q)_{\infty }}{(q;q)_{\infty }}}(x/2)^{\nu }{}_{1}\phi _{1}(0;q^{\nu +1};q,qx^{2}/4),\quad x\in \mathbb {C} .} They can be reduced to the Bessel function by the continuous limit:
lim q → 1 J ν ( k ) ( x ( 1 − q ) ; q ) = J ν ( x ) , k = 1 , 2 , 3. {\displaystyle \lim _{q\to 1}J_{\nu }^{(k)}(x(1-q);q)=J_{\nu }(x),\ k=1,2,3.} There is a connection formula between the first and second Jackson q -Bessel function (Gasper & Rahman (2004) ):
J ν ( 2 ) ( x ; q ) = ( − x 2 / 4 ; q ) ∞ J ν ( 1 ) ( x ; q ) , | x | < 2. {\displaystyle J_{\nu }^{(2)}(x;q)=(-x^{2}/4;q)_{\infty }J_{\nu }^{(1)}(x;q),\ |x|<2.} For integer order, the q -Bessel functions satisfy
J n ( k ) ( − x ; q ) = ( − 1 ) n J n ( k ) ( x ; q ) , n ∈ Z , k = 1 , 2 , 3. {\displaystyle J_{n}^{(k)}(-x;q)=(-1)^{n}J_{n}^{(k)}(x;q),\ n\in \mathbb {Z} ,\ k=1,2,3.} Negative Integer Order [ edit ] By using the relations (Gasper & Rahman (2004) ):
( q m + 1 ; q ) ∞ = ( q m + n + 1 ; q ) ∞ ( q m + 1 ; q ) n , {\displaystyle (q^{m+1};q)_{\infty }=(q^{m+n+1};q)_{\infty }(q^{m+1};q)_{n},} ( q ; q ) m + n = ( q ; q ) m ( q m + 1 ; q ) n , m , n ∈ Z , {\displaystyle (q;q)_{m+n}=(q;q)_{m}(q^{m+1};q)_{n},\ m,n\in \mathbb {Z} ,} we obtain
J − n ( k ) ( x ; q ) = ( − 1 ) n J n ( k ) ( x ; q ) , k = 1 , 2. {\displaystyle J_{-n}^{(k)}(x;q)=(-1)^{n}J_{n}^{(k)}(x;q),\ k=1,2.} Hahn mentioned that J ν ( 2 ) ( x ; q ) {\displaystyle J_{\nu }^{(2)}(x;q)} has infinitely many real zeros (Hahn (1949 )). Ismail proved that for ν > − 1 {\displaystyle \nu >-1} all non-zero roots of J ν ( 2 ) ( x ; q ) {\displaystyle J_{\nu }^{(2)}(x;q)} are real (Ismail (1982 )).
Ratio of q -Bessel Functions [ edit ] The function − i x − 1 / 2 J ν + 1 ( 2 ) ( i x 1 / 2 ; q ) / J ν ( 2 ) ( i x 1 / 2 ; q ) {\displaystyle -ix^{-1/2}J_{\nu +1}^{(2)}(ix^{1/2};q)/J_{\nu }^{(2)}(ix^{1/2};q)} is a completely monotonic function (Ismail (1982 )).
Recurrence Relations [ edit ] The first and second Jackson q -Bessel function have the following recurrence relations (see Ismail (1982) and Gasper & Rahman (2004) ):
q ν J ν + 1 ( k ) ( x ; q ) = 2 ( 1 − q ν ) x J ν ( k ) ( x ; q ) − J ν − 1 ( k ) ( x ; q ) , k = 1 , 2. {\displaystyle q^{\nu }J_{\nu +1}^{(k)}(x;q)={\frac {2(1-q^{\nu })}{x}}J_{\nu }^{(k)}(x;q)-J_{\nu -1}^{(k)}(x;q),\ k=1,2.} J ν ( 1 ) ( x q ; q ) = q ± ν / 2 ( J ν ( 1 ) ( x ; q ) ± x 2 J ν ± 1 ( 1 ) ( x ; q ) ) . {\displaystyle J_{\nu }^{(1)}(x{\sqrt {q}};q)=q^{\pm \nu /2}\left(J_{\nu }^{(1)}(x;q)\pm {\frac {x}{2}}J_{\nu \pm 1}^{(1)}(x;q)\right).} When ν > − 1 {\displaystyle \nu >-1} , the second Jackson q -Bessel function satisfies: | J ν ( 2 ) ( z ; q ) | ≤ ( − q ; q ) ∞ ( q ; q ) ∞ ( | z | 2 ) ν exp { log ( | z | 2 q ν / 4 ) 2 log q } . {\displaystyle \left|J_{\nu }^{(2)}(z;q)\right|\leq {\frac {(-{\sqrt {q}};q)_{\infty }}{(q;q)_{\infty }}}\left({\frac {|z|}{2}}\right)^{\nu }\exp \left\{{\frac {\log \left(|z|^{2}q^{\nu }/4\right)}{2\log q}}\right\}.} (see Zhang (2006 ).)
For n ∈ Z {\displaystyle n\in \mathbb {Z} } , | J n ( 2 ) ( z ; q ) | ≤ ( − q n + 1 ; q ) ∞ ( q ; q ) ∞ ( | z | 2 ) n ( − | z | 2 ; q ) ∞ . {\displaystyle \left|J_{n}^{(2)}(z;q)\right|\leq {\frac {(-q^{n+1};q)_{\infty }}{(q;q)_{\infty }}}\left({\frac {|z|}{2}}\right)^{n}(-|z|^{2};q)_{\infty }.} (see Koelink (1993 ).)
Generating Function [ edit ] The following formulas are the q -analog of the generating function for the Bessel function (see Gasper & Rahman (2004) ):
∑ n = − ∞ ∞ t n J n ( 2 ) ( x ; q ) = ( − x 2 / 4 ; q ) ∞ e q ( x t / 2 ) e q ( − x / 2 t ) , {\displaystyle \sum _{n=-\infty }^{\infty }t^{n}J_{n}^{(2)}(x;q)=(-x^{2}/4;q)_{\infty }e_{q}(xt/2)e_{q}(-x/2t),} ∑ n = − ∞ ∞ t n J n ( 3 ) ( x ; q ) = e q ( x t / 2 ) E q ( − q x / 2 t ) . {\displaystyle \sum _{n=-\infty }^{\infty }t^{n}J_{n}^{(3)}(x;q)=e_{q}(xt/2)E_{q}(-qx/2t).} e q {\displaystyle e_{q}} is the q -exponential function.
Alternative Representations [ edit ] Integral Representations [ edit ] The second Jackson q -Bessel function has the following integral representations (see Rahman (1987) and Ismail & Zhang (2018a) ):
J ν ( 2 ) ( x ; q ) = ( q 2 ν ; q ) ∞ 2 π ( q ν ; q ) ∞ ( x / 2 ) ν ⋅ ∫ 0 π ( e 2 i θ , e − 2 i θ , − i x q ( ν + 1 ) / 2 2 e i θ , − i x q ( ν + 1 ) / 2 2 e − i θ ; q ) ∞ ( e 2 i θ q ν , e − 2 i θ q ν ; q ) ∞ d θ , {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(q^{2\nu };q)_{\infty }}{2\pi (q^{\nu };q)_{\infty }}}(x/2)^{\nu }\cdot \int _{0}^{\pi }{\frac {\left(e^{2i\theta },e^{-2i\theta },-{\frac {ixq^{(\nu +1)/2}}{2}}e^{i\theta },-{\frac {ixq^{(\nu +1)/2}}{2}}e^{-i\theta };q\right)_{\infty }}{(e^{2i\theta }q^{\nu },e^{-2i\theta }q^{\nu };q)_{\infty }}}\,d\theta ,} ( a 1 , a 2 , ⋯ , a n ; q ) ∞ := ( a 1 ; q ) ∞ ( a 2 ; q ) ∞ ⋯ ( a n ; q ) ∞ , ℜ ν > 0 , {\displaystyle (a_{1},a_{2},\cdots ,a_{n};q)_{\infty }:=(a_{1};q)_{\infty }(a_{2};q)_{\infty }\cdots (a_{n};q)_{\infty },\ \Re \nu >0,} where ( a ; q ) ∞ {\displaystyle (a;q)_{\infty }} is the q -Pochhammer symbol . This representation reduces to the integral representation of the Bessel function in the limit q → 1 {\displaystyle q\to 1} .
J ν ( 2 ) ( z ; q ) = ( z / 2 ) ν 2 π log q − 1 ∫ − ∞ ∞ ( q ν + 1 / 2 z 2 e i x 4 ; q ) ∞ exp ( x 2 log q 2 ) ( q , − q ν + 1 / 2 e i x ; q ) ∞ d x . {\displaystyle J_{\nu }^{(2)}(z;q)={\frac {(z/2)^{\nu }}{\sqrt {2\pi \log q^{-1}}}}\int _{-\infty }^{\infty }{\frac {\left({\frac {q^{\nu +1/2}z^{2}e^{ix}}{4}};q\right)_{\infty }\exp \left({\frac {x^{2}}{\log q^{2}}}\right)}{(q,-q^{\nu +1/2}e^{ix};q)_{\infty }}}\,dx.} Hypergeometric Representations [ edit ] The second Jackson q -Bessel function has the following hypergeometric representations (see Koelink (1993 ), Chen, Ismail , and Muttalib (1994 )):
J ν ( 2 ) ( x ; q ) = ( x / 2 ) ν ( q ; q ) ∞ 1 ϕ 1 ( − x 2 / 4 ; 0 ; q , q ν + 1 ) , {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(x/2)^{\nu }}{(q;q)_{\infty }}}\ _{1}\phi _{1}(-x^{2}/4;0;q,q^{\nu +1}),} J ν ( 2 ) ( x ; q ) = ( x / 2 ) ν ( q ; q ) ∞ 2 ( q ; q ) ∞ [ f ( x / 2 , q ( ν + 1 / 2 ) / 2 ; q ) + f ( − x / 2 , q ( ν + 1 / 2 ) / 2 ; q ) ] , f ( x , a ; q ) := ( i a x ; q ) ∞ 3 ϕ 2 ( a , − a , 0 − q , i a x ; q , q ) . {\displaystyle J_{\nu }^{(2)}(x;q)={\frac {(x/2)^{\nu }({\sqrt {q}};q)_{\infty }}{2(q;q)_{\infty }}}[f(x/2,q^{(\nu +1/2)/2};q)+f(-x/2,q^{(\nu +1/2)/2};q)],\ f(x,a;q):=(iax;{\sqrt {q}})_{\infty }\ _{3}\phi _{2}\left({\begin{matrix}a,&-a,&0\\-{\sqrt {q}},&iax\end{matrix}};{\sqrt {q}},{\sqrt {q}}\right).} An asymptotic expansion can be obtained as an immediate consequence of the second formula.
For other hypergeometric representations, see Rahman (1987) .
Modified q -Bessel Functions [ edit ] The q -analog of the modified Bessel functions are defined with the Jackson q -Bessel function (Ismail (1981) and Olshanetsky & Rogov (1995) ):
I ν ( j ) ( x ; q ) = e i ν π / 2 J ν ( j ) ( x ; q ) , j = 1 , 2. {\displaystyle I_{\nu }^{(j)}(x;q)=e^{i\nu \pi /2}J_{\nu }^{(j)}(x;q),\ j=1,2.} K ν ( j ) ( x ; q ) = π 2 sin ( π ν ) { I − ν ( j ) ( x ; q ) − I ν ( j ) ( x ; q ) } , j = 1 , 2 , ν ∈ C − Z , {\displaystyle K_{\nu }^{(j)}(x;q)={\frac {\pi }{2\sin(\pi \nu )}}\left\{I_{-\nu }^{(j)}(x;q)-I_{\nu }^{(j)}(x;q)\right\},\ j=1,2,\ \nu \in \mathbb {C} -\mathbb {Z} ,} K n ( j ) ( x ; q ) = lim ν → n K ν ( j ) ( x ; q ) , n ∈ Z . {\displaystyle K_{n}^{(j)}(x;q)=\lim _{\nu \to n}K_{\nu }^{(j)}(x;q),\ n\in \mathbb {Z} .} There is a connection formula between the modified q-Bessel functions:
I ν ( 2 ) ( x ; q ) = ( − x 2 / 4 ; q ) ∞ I ν ( 1 ) ( x ; q ) . {\displaystyle I_{\nu }^{(2)}(x;q)=(-x^{2}/4;q)_{\infty }I_{\nu }^{(1)}(x;q).} For statistical applications, see Kemp (1997) .
Recurrence Relations [ edit ] By the recurrence relation of Jackson q -Bessel functions and the definition of modified q -Bessel functions, the following recurrence relation can be obtained ( K ν ( j ) ( x ; q ) {\displaystyle K_{\nu }^{(j)}(x;q)} also satisfies the same relation) (Ismail (1981) ):
q ν I ν + 1 ( j ) ( x ; q ) = 2 z ( 1 − q ν ) I ν ( j ) ( x ; q ) + I ν − 1 ( j ) ( x ; q ) , j = 1 , 2. {\displaystyle q^{\nu }I_{\nu +1}^{(j)}(x;q)={\frac {2}{z}}(1-q^{\nu })I_{\nu }^{(j)}(x;q)+I_{\nu -1}^{(j)}(x;q),\ j=1,2.} For other recurrence relations, see Olshanetsky & Rogov (1995) .
Continued Fraction Representation [ edit ] The ratio of modified q -Bessel functions form a continued fraction (Ismail (1981) ):
I ν ( 2 ) ( z ; q ) I ν − 1 ( 2 ) ( z ; q ) = 1 2 ( 1 − q ν ) / z + q ν 2 ( 1 − q ν + 1 ) / z + q ν + 1 2 ( 1 − q ν + 2 ) / z + ⋱ . {\displaystyle {\frac {I_{\nu }^{(2)}(z;q)}{I_{\nu -1}^{(2)}(z;q)}}={\cfrac {1}{2(1-q^{\nu })/z+{\cfrac {q^{\nu }}{2(1-q^{\nu +1})/z+{\cfrac {q^{\nu +1}}{2(1-q^{\nu +2})/z+\ddots }}}}}}.} Alternative Representations [ edit ] Hypergeometric Representations [ edit ] The function I ν ( 2 ) ( z ; q ) {\displaystyle I_{\nu }^{(2)}(z;q)} has the following representation (Ismail & Zhang (2018b) ):
I ν ( 2 ) ( z ; q ) = ( z / 2 ) ν ( q , q ) ∞ 1 ϕ 1 ( z 2 / 4 ; 0 ; q , q ν + 1 ) . {\displaystyle I_{\nu }^{(2)}(z;q)={\frac {(z/2)^{\nu }}{(q,q)_{\infty }}}{}_{1}\phi _{1}(z^{2}/4;0;q,q^{\nu +1}).} Integral Representations [ edit ] The modified q -Bessel functions have the following integral representations (Ismail (1981) ):
I ν ( 2 ) ( z ; q ) = ( z 2 / 4 ; q ) ∞ ( 1 π ∫ 0 π cos ν θ d θ ( e i θ z / 2 ; q ) ∞ ( e − i θ z / 2 ; q ) ∞ − sin ν π π ∫ 0 ∞ e − ν t d t ( − e t z / 2 ; q ) ∞ ( − e − t z / 2 ; q ) ∞ ) , {\displaystyle I_{\nu }^{(2)}(z;q)=\left(z^{2}/4;q\right)_{\infty }\left({\frac {1}{\pi }}\int _{0}^{\pi }{\frac {\cos \nu \theta \,d\theta }{\left(e^{i\theta }z/2;q\right)_{\infty }\left(e^{-i\theta }z/2;q\right)_{\infty }}}-{\frac {\sin \nu \pi }{\pi }}\int _{0}^{\infty }{\frac {e^{-\nu t}\,dt}{\left(-e^{t}z/2;q\right)_{\infty }\left(-e^{-t}z/2;q\right)_{\infty }}}\right),} K ν ( 1 ) ( z ; q ) = 1 2 ∫ 0 ∞ e − ν t d t ( − e t / 2 z / 2 ; q ) ∞ ( − e − t / 2 z / 2 ; q ) ∞ , | arg z | < π / 2 , {\displaystyle K_{\nu }^{(1)}(z;q)={\frac {1}{2}}\int _{0}^{\infty }{\frac {e^{-\nu t}\,dt}{\left(-e^{t/2}z/2;q\right)_{\infty }\left(-e^{-t/2}z/2;q\right)_{\infty }}},\ |\arg z|<\pi /2,} K ν ( 1 ) ( z ; q ) = ∫ 0 ∞ cosh ν d t ( − e t / 2 z / 2 ; q ) ∞ ( − e − t / 2 z / 2 ; q ) ∞ . {\displaystyle K_{\nu }^{(1)}(z;q)=\int _{0}^{\infty }{\frac {\cosh \nu \,dt}{\left(-e^{t/2}z/2;q\right)_{\infty }\left(-e^{-t/2}z/2;q\right)_{\infty }}}.} Chen, Yang; Ismail, Mourad E. H.; Muttalib, K.A. (1994), "Asymptotics of basic Bessel functions and q -Laguerre polynomials", Journal of Computational and Applied Mathematics , 54 (3): 263– 272, doi :10.1016/0377-0427(92)00128-v Gasper, G.; Rahman, M. (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719 Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten , 2 (1– 2): 4– 34, doi :10.1002/mana.19490020103 , ISSN 0025-584X , MR 0030647 Ismail, Mourad E. H. (1981), "The Basic Bessel Functions and Polynomials", SIAM Journal on Mathematical Analysis , 12 (3): 454– 468, doi :10.1137/0512038 Ismail, Mourad E. H. (1982), "The zeros of basic Bessel functions, the functions J ν+ax (x ), and associated orthogonal polynomials", Journal of Mathematical Analysis and Applications , 86 (1): 1– 19, doi :10.1016/0022-247X(82)90248-7 , ISSN 0022-247X , MR 0649849 Ismail, M. E. H.; Zhang, R. (2018a), "Integral and Series Representations of q -Polynomials and Functions: Part I", Analysis and Applications , 16 (2): 209– 281, arXiv :1604.08441 , doi :10.1142/S0219530517500129 , S2CID 119142457 Ismail, M. E. H.; Zhang, R. (2018b), "q -Bessel Functions and Rogers-Ramanujan Type Identities", Proceedings of the American Mathematical Society , 146 (9): 3633– 3646, arXiv :1508.06861 , doi :10.1090/proc/13078 , S2CID 119721248 Jackson, F. H. (1906a), "I.—On generalized functions of Legendre and Bessel", Transactions of the Royal Society of Edinburgh , 41 (1): 1– 28, doi :10.1017/S0080456800080017 Jackson, F. H. (1906b), "VI.—Theorems relating to a generalization of the Bessel function" , Transactions of the Royal Society of Edinburgh , 41 (1): 105– 118, doi :10.1017/S0080456800080078 Jackson, F. H. (1906c), "XVII.—Theorems relating to a generalization of Bessel's function" , Transactions of the Royal Society of Edinburgh , 41 (2): 399– 408, doi :10.1017/s0080456800034475 , JFM 36.0513.02 Jackson, F. H. (1905a), "The Application of Basic Numbers to Bessel's and Legendre's Functions" , Proceedings of the London Mathematical Society , 2, 2 (1): 192– 220, doi :10.1112/plms/s2-2.1.192 Jackson, F. H. (1905b), "The Application of Basic Numbers to Bessel's and Legendre's Functions (Second paper)" , Proceedings of the London Mathematical Society , 2, 3 (1): 1– 23, doi :10.1112/plms/s2-3.1.1 Kemp, A. W. (1997), "On Modified q-Bessel Functions and Some Statistical Applications", in N. Balakrishnan (ed.), Advances in Combinatorial Methods and Applications to Probability and Statistics , pp. 451– 463, doi :10.1007/978-1-4612-4140-9_27 , ISBN 978-1-4612-4140-9 , S2CID 124998083 Koelink, H. T. (1993), "Hansen-Lommel Orthogonality Relations for Jackson's q -Bessel Functions", Journal of Mathematical Analysis and Applications , 175 (2): 425– 437, doi :10.1006/jmaa.1993.1181 Olshanetsky, M. A.; Rogov, V. B. (1995), "The Modified q -Bessel Functions and the q -Bessel-Macdonald Functions", arXiv :q-alg/9509013 Rahman, M. (1987), "An Integral Representation and Some Transformation Properties of q -Bessel Functions", Journal of Mathematical Analysis and Applications , 125 : 58– 71, doi :10.1016/0022-247x(87)90164-8 Zhang, R. (2006), "Plancherel-Rotach Asymptotics for q -Series", arXiv :math/0612216