In mathematics , the Kodaira–Spencer map , introduced by Kunihiko Kodaira and Donald C. Spencer , is a map associated to a deformation of a scheme or complex manifold X , taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X .
Historical motivation [ edit ] The Kodaira–Spencer map was originally constructed in the setting of complex manifolds. Given a complex analytic manifold M {\displaystyle M} with charts U i {\displaystyle U_{i}} and biholomorphic maps f j k {\displaystyle f_{jk}} sending z k → z j = ( z j 1 , … , z j n ) {\displaystyle z_{k}\to z_{j}=(z_{j}^{1},\ldots ,z_{j}^{n})} gluing the charts together, the idea of deformation theory is to replace these transition maps f j k ( z k ) {\displaystyle f_{jk}(z_{k})} by parametrized transition maps f j k ( z k , t 1 , … , t k ) {\displaystyle f_{jk}(z_{k},t_{1},\ldots ,t_{k})} over some base B {\displaystyle B} (which could be a real manifold) with coordinates t 1 , … , t k {\displaystyle t_{1},\ldots ,t_{k}} , such that f j k ( z k , 0 , … , 0 ) = f j k ( z k ) {\displaystyle f_{jk}(z_{k},0,\ldots ,0)=f_{jk}(z_{k})} . This means the parameters t i {\displaystyle t_{i}} deform the complex structure of the original complex manifold M {\displaystyle M} . Then, these functions must also satisfy a cocycle condition, which gives a 1-cocycle on M {\displaystyle M} with values in its tangent bundle. Since the base can be assumed to be a polydisk, this process gives a map between the tangent space of the base to H 1 ( M , T M ) {\displaystyle H^{1}(M,T_{M})} called the Kodaira–Spencer map.[ 1]
Original definition [ edit ] More formally, the Kodaira–Spencer map is[ 2]
K S : T 0 B → H 1 ( M , T M ) {\displaystyle KS:T_{0}B\to H^{1}(M,T_{M})} where
M → B {\displaystyle {\mathcal {M}}\to B} is a smooth proper map between complex spaces [ 3] (i.e., a deformation of the special fiber M = M 0 {\displaystyle M={\mathcal {M}}_{0}} .) K S {\displaystyle KS} is the connecting homomorphism obtained by taking a long exact cohomology sequence of the surjection T M | M → T 0 B ⊗ O M {\displaystyle T{\mathcal {M}}|_{M}\to T_{0}B\otimes {\mathcal {O}}_{M}} whose kernel is the tangent bundle T M {\displaystyle T_{M}} . If v {\displaystyle v} is in T 0 B {\displaystyle T_{0}B} , then its image K S ( v ) {\displaystyle KS(v)} is called the Kodaira–Spencer class of v {\displaystyle v} .
Because deformation theory has been extended to multiple other contexts, such as deformations in scheme theory, or ringed topoi , there are constructions of the Kodaira–Spencer map for these contexts.
In the scheme theory over a base field k {\displaystyle k} of characteristic 0 {\displaystyle 0} , there is a natural bijection between isomorphisms classes of X → S = Spec ( k [ t ] / t 2 ) {\displaystyle {\mathcal {X}}\to S=\operatorname {Spec} (k[t]/t^{2})} and H 1 ( X , T X ) {\displaystyle H^{1}(X,TX)} .
Using infinitesimals [ edit ] Over characteristic 0 {\displaystyle 0} the construction of the Kodaira–Spencer map[ 4] can be done using an infinitesimal interpretation of the cocycle condition. If we have a complex manifold X {\displaystyle X} covered by finitely many charts U = { U α } α ∈ I {\displaystyle {\mathcal {U}}=\{U_{\alpha }\}_{\alpha \in I}} with coordinates z α = ( z α 1 , … , z α n ) {\displaystyle z_{\alpha }=(z_{\alpha }^{1},\ldots ,z_{\alpha }^{n})} and transition functions
f β α : U β | U α β → U α | U α β {\displaystyle f_{\beta \alpha }:U_{\beta }|_{U_{\alpha \beta }}\to U_{\alpha }|_{U_{\alpha \beta }}} where f α β ( z β ) = z α {\displaystyle f_{\alpha \beta }(z_{\beta })=z_{\alpha }}
Recall that a deformation is given by a commutative diagram
X → X ↓ ↓ Spec ( C ) → Spec ( C [ ε ] ) {\displaystyle {\begin{matrix}X&\to &{\mathfrak {X}}\\\downarrow &&\downarrow \\{\text{Spec}}(\mathbb {C} )&\to &{\text{Spec}}(\mathbb {C} [\varepsilon ])\end{matrix}}}
where C [ ε ] {\displaystyle \mathbb {C} [\varepsilon ]} is the ring of dual numbers and the vertical maps are flat, the deformation has the cohomological interpretation as cocycles f ~ α β ( z β , ε ) {\displaystyle {\tilde {f}}_{\alpha \beta }(z_{\beta },\varepsilon )} on U α × Spec ( C [ ε ] ) {\displaystyle U_{\alpha }\times {\text{Spec}}(\mathbb {C} [\varepsilon ])} where
z α = f ~ α β ( z β , ε ) = f α β ( z β ) + ε b α β ( z β ) {\displaystyle z_{\alpha }={\tilde {f}}_{\alpha \beta }(z_{\beta },\varepsilon )=f_{\alpha \beta }(z_{\beta })+\varepsilon b_{\alpha \beta }(z_{\beta })}
If the f ~ α β {\displaystyle {\tilde {f}}_{\alpha \beta }} satisfy the cocycle condition, then they glue to the deformation X {\displaystyle {\mathfrak {X}}} . This can be read as
f ~ α γ ( z γ , ε ) = f ~ α β ( f ~ β γ ( z γ , ε ) , ε ) = f α β ( f β γ ( z γ ) + ε b β γ ( z γ ) ) + ε b α β ( f β γ ( z γ ) + ε b β γ ( z γ ) ) {\displaystyle {\begin{aligned}{\tilde {f}}_{\alpha \gamma }(z_{\gamma },\varepsilon )={}&{\tilde {f}}_{\alpha \beta }({\tilde {f}}_{\beta \gamma }(z_{\gamma },\varepsilon ),\varepsilon )\\={}&f_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))\\&+\varepsilon b_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))\end{aligned}}}
Using the properties of the dual numbers, namely g ( a + b ε ) = g ( a ) + ε g ′ ( a ) b {\displaystyle g(a+b\varepsilon )=g(a)+\varepsilon g'(a)b} , we have
f α β ( f β γ ( z γ ) + ε b β γ ( z γ ) ) = f α β ( f β γ ( z γ ) ) + ε ∂ f α β ∂ z β ( z β ) b β γ ( z γ ) {\displaystyle {\begin{aligned}f_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))&=f_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma }))+\varepsilon {\frac {\partial f_{\alpha \beta }}{\partial z_{\beta }}}(z_{\beta })b_{\beta \gamma }(z_{\gamma })\\\end{aligned}}}
and
ε b α β ( f β γ ( z γ ) + ε b β γ ( z γ ) ) = ε b α β ( z β ) {\displaystyle {\begin{aligned}\varepsilon b_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))=\varepsilon b_{\alpha \beta }(z_{\beta })\end{aligned}}}
hence the cocycle condition on U α × Spec ( C [ ε ] ) {\displaystyle U_{\alpha }\times {\text{Spec}}(\mathbb {C} [\varepsilon ])} is the following two rules
b α γ = ∂ f α β ∂ z β b β γ + b α β {\displaystyle b_{\alpha \gamma }={\frac {\partial f_{\alpha \beta }}{\partial z_{\beta }}}b_{\beta \gamma }+b_{\alpha \beta }} f α γ = f α β ∘ f β γ {\displaystyle f_{\alpha \gamma }=f_{\alpha \beta }\circ f_{\beta \gamma }} Conversion to cocycles of vector fields [ edit ] The cocycle of the deformation can easily be converted to a cocycle of vector fields θ = { θ α β } ∈ C 1 ( U , T X ) {\displaystyle \theta =\{\theta _{\alpha \beta }\}\in C^{1}({\mathcal {U}},T_{X})} as follows: given the cocycle f ~ α β = f α β + ε b α β {\displaystyle {\tilde {f}}_{\alpha \beta }=f_{\alpha \beta }+\varepsilon b_{\alpha \beta }} we can form the vector field
θ α β = ∑ i = 1 n b α β i ∂ ∂ z α i {\displaystyle \theta _{\alpha \beta }=\sum _{i=1}^{n}b_{\alpha \beta }^{i}{\frac {\partial }{\partial z_{\alpha }^{i}}}}
which is a 1-cochain. Then the rule for the transition maps of b α γ {\displaystyle b_{\alpha \gamma }} gives this 1-cochain as a 1-cocycle, hence a class [ θ ] ∈ H 1 ( X , T X ) {\displaystyle [\theta ]\in H^{1}(X,T_{X})} .
Using vector fields [ edit ] One of the original constructions of this map used vector fields in the settings of differential geometry and complex analysis.[ 1] Given the notation above, the transition from a deformation to the cocycle condition is transparent over a small base of dimension one, so there is only one parameter t {\displaystyle t} . Then, the cocycle condition can be read as
f i k α ( z k , t ) = f i j α ( f k j 1 ( z k , t ) , … , f k j n ( z k , t ) , t ) {\displaystyle f_{ik}^{\alpha }(z_{k},t)=f_{ij}^{\alpha }(f_{kj}^{1}(z_{k},t),\ldots ,f_{kj}^{n}(z_{k},t),t)}
Then, the derivative of f i k α ( z k , t ) {\displaystyle f_{ik}^{\alpha }(z_{k},t)} with respect to t {\displaystyle t} can be calculated from the previous equation as
∂ f i k α ( z k , t ) ∂ t = ∂ f i j α ( z j , t ) ∂ t + ∑ β = 0 n ∂ f i j α ( z j , t ) ∂ f j k β ( z k , t ) ⋅ ∂ f j k β ( z k , t ) ∂ t {\displaystyle {\begin{aligned}{\frac {\partial f_{ik}^{\alpha }(z_{k},t)}{\partial t}}&={\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}+\sum _{\beta =0}^{n}{\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial f_{jk}^{\beta }(z_{k},t)}}\cdot {\frac {\partial f_{jk}^{\beta }(z_{k},t)}{\partial t}}\\\end{aligned}}}
Note because z j β = f j k β ( z k , t ) {\displaystyle z_{j}^{\beta }=f_{jk}^{\beta }(z_{k},t)} and z i α = f i j α ( z j , t ) {\displaystyle z_{i}^{\alpha }=f_{ij}^{\alpha }(z_{j},t)} , then the derivative reads as
∂ f i k α ( z k , t ) ∂ t = ∂ f i j α ( z j , t ) ∂ t + ∑ β = 0 n ∂ z i α ∂ z j β ⋅ ∂ f j k β ( z k , t ) ∂ t {\displaystyle {\begin{aligned}{\frac {\partial f_{ik}^{\alpha }(z_{k},t)}{\partial t}}&={\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}+\sum _{\beta =0}^{n}{\frac {\partial z_{i}^{\alpha }}{\partial z_{j}^{\beta }}}\cdot {\frac {\partial f_{jk}^{\beta }(z_{k},t)}{\partial t}}\\\end{aligned}}}
With a change of coordinates of the part of the previous holomorphic vector field having these partial derivatives as the coefficients, we can write
∂ ∂ z j β = ∑ α = 1 n ∂ z i α ∂ z j β ⋅ ∂ ∂ z i α {\displaystyle {\frac {\partial }{\partial z_{j}^{\beta }}}=\sum _{\alpha =1}^{n}{\frac {\partial z_{i}^{\alpha }}{\partial z_{j}^{\beta }}}\cdot {\frac {\partial }{\partial z_{i}^{\alpha }}}}
Hence we can write up the equation above as the following equation of vector fields
∑ α = 0 n ∂ f i k α ( z k , t ) ∂ t ∂ ∂ z i α = ∑ α = 0 n ∂ f i j α ( z j , t ) ∂ t ∂ ∂ z i α + ∑ β = 0 n ∂ f j k β ( z k , t ) ∂ t ∂ ∂ z j β {\displaystyle {\begin{aligned}\sum _{\alpha =0}^{n}{\frac {\partial f_{ik}^{\alpha }(z_{k},t)}{\partial t}}{\frac {\partial }{\partial z_{i}^{\alpha }}}=&\sum _{\alpha =0}^{n}{\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}{\frac {\partial }{\partial z_{i}^{\alpha }}}\\&+\sum _{\beta =0}^{n}{\frac {\partial f_{jk}^{\beta }(z_{k},t)}{\partial t}}{\frac {\partial }{\partial z_{j}^{\beta }}}\\\end{aligned}}}
Rewriting this as the vector fields
θ i k ( t ) = θ i j ( t ) + θ j k ( t ) {\displaystyle \theta _{ik}(t)=\theta _{ij}(t)+\theta _{jk}(t)}
where
θ i j ( t ) = ∂ f i j α ( z j , t ) ∂ t ∂ ∂ z i α {\displaystyle \theta _{ij}(t)={\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}{\frac {\partial }{\partial z_{i}^{\alpha }}}}
gives the cocycle condition. Hence θ i j {\displaystyle \theta _{ij}} has an associated class in [ θ i j ] ∈ H 1 ( M , T M ) {\displaystyle [\theta _{ij}]\in H^{1}(M,T_{M})} from the original deformation f ~ i j {\displaystyle {\tilde {f}}_{ij}} of f i j {\displaystyle f_{ij}} .
Deformations of a smooth variety[ 5]
X → X ↓ ↓ Spec ( k ) → Spec ( k [ ε ] ) {\displaystyle {\begin{matrix}X&\to &{\mathfrak {X}}\\\downarrow &&\downarrow \\{\text{Spec}}(k)&\to &{\text{Spec}}(k[\varepsilon ])\end{matrix}}}
have a Kodaira-Spencer class constructed cohomologically. Associated to this deformation is the short exact sequence
0 → π ∗ Ω Spec ( k [ ε ] ) 1 → Ω X 1 → Ω X / S 1 → 0 {\displaystyle 0\to \pi ^{*}\Omega _{{\text{Spec}}(k[\varepsilon ])}^{1}\to \Omega _{\mathfrak {X}}^{1}\to \Omega _{{\mathfrak {X}}/S}^{1}\to 0}
(where π : X → S = Spec ( k [ ε ] ) {\displaystyle \pi :{\mathfrak {X}}\to S={\text{Spec}}(k[\varepsilon ])} ) which when tensored by the O X {\displaystyle {\mathcal {O}}_{\mathfrak {X}}} -module O X {\displaystyle {\mathcal {O}}_{X}} gives the short exact sequence
0 → O X → Ω X 1 ⊗ O X → Ω X 1 → 0 {\displaystyle 0\to {\mathcal {O}}_{X}\to \Omega _{\mathfrak {X}}^{1}\otimes {\mathcal {O}}_{X}\to \Omega _{X}^{1}\to 0}
Using derived categories , this defines an element in
R Hom ( Ω X 1 , O X [ + 1 ] ) ≅ R Hom ( O X , T X [ + 1 ] ) ≅ Ext 1 ( O X , T X ) ≅ H 1 ( X , T X ) {\displaystyle {\begin{aligned}\mathbf {R} {\text{Hom}}(\Omega _{X}^{1},{\mathcal {O}}_{X}[+1])&\cong \mathbf {R} {\text{Hom}}({\mathcal {O}}_{X},T_{X}[+1])\\&\cong {\text{Ext}}^{1}({\mathcal {O}}_{X},T_{X})\\&\cong H^{1}(X,T_{X})\end{aligned}}}
generalizing the Kodaira–Spencer map. Notice this could be generalized to any smooth map f : X → Y {\displaystyle f:X\to Y} in Sch / S {\displaystyle {\text{Sch}}/S} using the cotangent sequence, giving an element in H 1 ( X , T X / Y ⊗ f ∗ ( Ω Y / Z 1 ) ) {\displaystyle H^{1}(X,T_{X/Y}\otimes f^{*}(\Omega _{Y/Z}^{1}))} .
One of the most abstract constructions of the Kodaira–Spencer maps comes from the cotangent complexes associated to a composition of maps of ringed topoi
X → f Y → Z {\displaystyle X\xrightarrow {f} Y\to Z}
Then, associated to this composition is a distinguished triangle
f ∗ L Y / Z → L X / Z → L X / Y → [ + 1 ] {\displaystyle f^{*}\mathbf {L} _{Y/Z}\to \mathbf {L} _{X/Z}\to \mathbf {L} _{X/Y}\xrightarrow {[+1]} }
and this boundary map forms the Kodaira–Spencer map[ 6] (or cohomology class, denoted K ( X / Y / Z ) {\displaystyle K(X/Y/Z)} ). If the two maps in the composition are smooth maps of schemes, then this class coincides with the class in H 1 ( X , T X / Y ⊗ f ∗ ( Ω Y / Z 1 ) ) {\displaystyle H^{1}(X,T_{X/Y}\otimes f^{*}(\Omega _{Y/Z}^{1}))} .
With analytic germs [ edit ] The Kodaira–Spencer map when considering analytic germs is easily computable using the tangent cohomology in deformation theory and its versal deformations.[ 7] For example, given the germ of a polynomial f ( z 1 , … , z n ) ∈ C { z 1 , … , z n } = H {\displaystyle f(z_{1},\ldots ,z_{n})\in \mathbb {C} \{z_{1},\ldots ,z_{n}\}=H} , its space of deformations can be given by the module
T 1 = H d f ⋅ H n {\displaystyle T^{1}={\frac {H}{df\cdot H^{n}}}}
For example, if f = y 2 − x 3 {\displaystyle f=y^{2}-x^{3}} then its versal deformations is given by
T 1 = C { x , y } ( y , x 2 ) {\displaystyle T^{1}={\frac {\mathbb {C} \{x,y\}}{(y,x^{2})}}}
hence an arbitrary deformation is given by F ( x , y , a 1 , a 2 ) = y 2 − x 3 + a 1 + a 2 x {\displaystyle F(x,y,a_{1},a_{2})=y^{2}-x^{3}+a_{1}+a_{2}x} . Then for a vector v ∈ T 0 ( C 2 ) {\displaystyle v\in T_{0}(\mathbb {C} ^{2})} , which has the basis
∂ ∂ a 1 , ∂ ∂ a 2 {\displaystyle {\frac {\partial }{\partial a_{1}}},{\frac {\partial }{\partial a_{2}}}}
there the map K S : v ↦ v ( F ) {\displaystyle KS:v\mapsto v(F)} sending
ϕ 1 ∂ ∂ a 1 + ϕ 2 ∂ ∂ a 2 ↦ ϕ 1 ∂ F ∂ a 1 + ϕ 2 ∂ F ∂ a 2 = ϕ 1 + ϕ 2 ⋅ x {\displaystyle {\begin{aligned}\phi _{1}{\frac {\partial }{\partial a_{1}}}+\phi _{2}{\frac {\partial }{\partial a_{2}}}\mapsto &\phi _{1}{\frac {\partial F}{\partial a_{1}}}+\phi _{2}{\frac {\partial F}{\partial a_{2}}}\\&=\phi _{1}+\phi _{2}\cdot x\end{aligned}}}
On affine hypersurfaces with the cotangent complex [ edit ] For an affine hypersurface i : X 0 ↪ A n → Spec ( k ) {\displaystyle i:X_{0}\hookrightarrow \mathbb {A} ^{n}\to {\text{Spec}}(k)} over a field k {\displaystyle k} defined by a polynomial f {\displaystyle f} , there is the associated fundamental triangle
i ∗ L A n / Spec ( k ) → L X 0 / Spec ( k ) → L X 0 / A n → [ + 1 ] {\displaystyle i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)}\to \mathbf {L} _{X_{0}/{\text{Spec}}(k)}\to \mathbf {L} _{X_{0}/\mathbb {A} ^{n}}\xrightarrow {[+1]} }
Then, applying R H o m ( − , O X 0 ) {\displaystyle \mathbf {RHom} (-,{\mathcal {O}}_{X_{0}})} gives the long exact sequence
RHom ( i ∗ L A n / Spec ( k ) , O X 0 [ + 1 ] ) ← RHom ( L X 0 / Spec ( k ) , O X 0 [ + 1 ] ) ← RHom ( L X 0 / A n , O X 0 [ + 1 ] ) ← RHom ( i ∗ L A n / Spec ( k ) , O X 0 ) ← RHom ( L X 0 / Spec ( k ) , O X 0 ) ← RHom ( L X 0 / A n , O X 0 ) {\displaystyle {\begin{aligned}&{\textbf {RHom}}(i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/\mathbb {A} ^{n}},{\mathcal {O}}_{X_{0}}[+1])\\\leftarrow &{\textbf {RHom}}(i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}})\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}})\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/\mathbb {A} ^{n}},{\mathcal {O}}_{X_{0}})\end{aligned}}}
Recall that there is the isomorphism
RHom ( L X 0 / Spec ( k ) , O X 0 [ + 1 ] ) ≅ Ext 1 ( L X 0 / Spec ( k ) , O X 0 ) {\displaystyle {\textbf {RHom}}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])\cong {\text{Ext}}^{1}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}})}
from general theory of derived categories, and the ext group classifies the first-order deformations. Then, through a series of reductions, this group can be computed. First, since L A n / Spec ( k ) ≅ Ω A n / Spec ( k ) 1 {\displaystyle \mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)}\cong \Omega _{\mathbb {A} ^{n}/{\text{Spec}}(k)}^{1}} is a free module , RHom ( i ∗ L A n / Spec ( k ) , O X 0 [ + 1 ] ) = 0 {\displaystyle {\textbf {RHom}}(i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])=0} . Also, because L X 0 / A n ≅ I / I 2 [ + 1 ] {\displaystyle \mathbf {L} _{X_{0}/\mathbb {A} ^{n}}\cong {\mathcal {I}}/{\mathcal {I}}^{2}[+1]} , there are isomorphisms
RHom ( L X 0 / A n , O X 0 [ + 1 ] ) ≅ RHom ( I / I 2 [ + 1 ] , O X 0 [ + 1 ] ) ≅ RHom ( I / I 2 , O X 0 ) ≅ Ext 0 ( I / I 2 , O X 0 ) ≅ Hom ( I / I 2 , O X 0 ) ≅ O X 0 {\displaystyle {\begin{aligned}{\textbf {RHom}}(\mathbf {L} _{X_{0}/\mathbb {A} ^{n}},{\mathcal {O}}_{X_{0}}[+1])\cong &{\textbf {RHom}}({\mathcal {I}}/{\mathcal {I}}^{2}[+1],{\mathcal {O}}_{X_{0}}[+1])\\\cong &{\textbf {RHom}}({\mathcal {I}}/{\mathcal {I}}^{2},{\mathcal {O}}_{X_{0}})\\\cong &{\text{Ext}}^{0}({\mathcal {I}}/{\mathcal {I}}^{2},{\mathcal {O}}_{X_{0}})\\\cong &{\text{Hom}}({\mathcal {I}}/{\mathcal {I}}^{2},{\mathcal {O}}_{X_{0}})\\\cong &{\mathcal {O}}_{X_{0}}\end{aligned}}}
The last isomorphism comes from the isomorphism I / I 2 ≅ I ⊗ O A n O X 0 {\displaystyle {\mathcal {I}}/{\mathcal {I}}^{2}\cong {\mathcal {I}}\otimes _{{\mathcal {O}}_{\mathbb {A} ^{n}}}{\mathcal {O}}_{X_{0}}} , and a morphism in
Hom O X 0 ( I ⊗ O A n O X 0 , O X 0 ) {\displaystyle {\text{Hom}}_{{\mathcal {O}}_{X_{0}}}({\mathcal {I}}\otimes _{{\mathcal {O}}_{\mathbb {A} ^{n}}}{\mathcal {O}}_{X_{0}},{\mathcal {O}}_{X_{0}})} send [ g f ] ↦ g ′ g + ( f ) {\displaystyle [gf]\mapsto g'g+(f)}
giving the desired isomorphism. From the cotangent sequence
( f ) ( f ) 2 → [ g ] ↦ d g ⊗ 1 Ω A n 1 ⊗ O X 0 → Ω X 0 / Spec ( k ) 1 → 0 {\displaystyle {\frac {(f)}{(f)^{2}}}\xrightarrow {[g]\mapsto dg\otimes 1} \Omega _{\mathbb {A} ^{n}}^{1}\otimes {\mathcal {O}}_{X_{0}}\to \Omega _{X_{0}/{\text{Spec}}(k)}^{1}\to 0}
(which is a truncated version of the fundamental triangle) the connecting map of the long exact sequence is the dual of [ g ] ↦ d g ⊗ 1 {\displaystyle [g]\mapsto dg\otimes 1} , giving the isomorphism
Ext 1 ( L X 0 / k , O X 0 ) ≅ k [ x 1 , … , x n ] ( f , ∂ f ∂ x 1 , … , ∂ f ∂ x n ) {\displaystyle {\text{Ext}}^{1}(\mathbf {L} _{X_{0}/k},{\mathcal {O}}_{X_{0}})\cong {\frac {k[x_{1},\ldots ,x_{n}]}{\left(f,{\frac {\partial f}{\partial x_{1}}},\ldots ,{\frac {\partial f}{\partial x_{n}}}\right)}}}
Note this computation can be done by using the cotangent sequence and computing Ext 1 ( Ω X 0 1 , O X 0 ) {\displaystyle {\text{Ext}}^{1}(\Omega _{X_{0}}^{1},{\mathcal {O}}_{X_{0}})} .[ 8] Then, the Kodaira–Spencer map sends a deformation
k [ ε ] [ x 1 , … , x n ] f + ε g {\displaystyle {\frac {k[\varepsilon ][x_{1},\ldots ,x_{n}]}{f+\varepsilon g}}}
to the element g ∈ Ext 1 ( L X 0 / k , O X 0 ) {\displaystyle g\in {\text{Ext}}^{1}(\mathbf {L} _{X_{0}/k},{\mathcal {O}}_{X_{0}})} .
^ a b Kodaira (2005). Complex Manifolds and Deformation of Complex Structures . Classics in Mathematics. pp. 182 –184, 188– 189. doi :10.1007/b138372 . ISBN 978-3-540-22614-7 . ^ Huybrechts 2005 , 6.2.6. ^ The main difference between a complex manifold and a complex space is that the latter is allowed to have a nilpotent. ^ Arbarello; Cornalba; Griffiths (2011). Geometry of Algebraic Curves II . Grundlehren der mathematischen Wissenschaften, Arbarello,E. Et al: Algebraic Curves I, II. Springer. pp. 172– 174. ISBN 9783540426882 . ^ Sernesi. "An overview of classical deformation theory" (PDF) . Archived (PDF) from the original on 2020-04-27. ^ Illusie, L. Complexe cotangent ; application a la theorie des deformations (PDF) . Archived from the original (PDF) on 2020-11-25. Retrieved 2020-04-27 . ^ Palamodov (1990). "Deformations of Complex Spaces". Several Complex Variables IV . Encyclopaedia of Mathematical Sciences. Vol. 10. pp. 138, 130. doi :10.1007/978-3-642-61263-3_3 . ISBN 978-3-642-64766-6 . ^ Talpo, Mattia; Vistoli, Angelo (2011-01-30). "Deformation theory from the point of view of fibered categories". pp. 25, exercise 3.25. arXiv :1006.0497 [math.AG ].