Lattice (module)

In mathematics, particularly in the field of ring theory, a lattice is an algebraic structure which, informally, provides a general framework for taking a sparse set of points in a larger space. Lattices generalize several more specific notions, including integer lattices in real vector spaces, orders in algebraic number fields, and fractional ideals in integral domains. Formally, a lattice is a kind of module over a ring that is embedded in a vector space over a field.

Formal definition

[edit]

Let R be an integral domain with field of fractions K, and let V be a vector space over K (and thus also an R-module). An R-submodule M of a V is called a lattice if M is finitely generated over R. It is called full if V = K · M, i.e. if M contains a K-basis of V.[1] Some authors require lattices to be full, but we do not adopt this convention in this article.[2]

Any finitely-generated torsion-free module M over R can be considered as a full R-lattice by taking as the ambient space , the extension of scalars of M to K. To avoid this ambiguity, lattices are usually studied in the context of a fixed ambient space.

Properties

[edit]

The behavior of the base ring R of a lattice M strongly influences the behavior of M. If R is a Dedekind domain, M is completely decomposable (with respect to a suitable basis) as a direct sum of fractional ideals. Every lattice over a Dedekind domain is projective.[3]

Lattices are well-behaved under localization and completion: A lattice M is equal to the intersection of all the localizations of M at . Further, two lattices are equal if and only if their localizations are equal at all primes. Over a Dedekind domain, the local-global-dictionary is even more robust: any two full R-lattices are equal all all but finitely many localizations, and for any choice[4] of -lattices there exists an R-lattice M satisfying . Over Dedekind domains a similar correspondence exists between R-lattices and collections of lattices over the completions of R with respect at primes .[5]

A pair of lattices M and N over R admit a notion of relative index analogous to that of integer lattices in . If M and N are projective (e.g. if R is a Dedekind domain), then M and N have trivial relative index if and only if M = N.[6]

Pure sublattices

[edit]

An R-submodule N of M that is itself a lattice is an R-pure sublattice if M/N is R-torsion-free. There is a one-to-one correspondence between R-pure sublattices N of M and K-subspaces W of V, given by[7]

See also

[edit]
  • Lattice (group), for the case where M is a Z-module embedded in a vector space V over the field of real numbers R, and the Euclidean metric is used to describe the lattice structure

References

[edit]
  1. ^ Reiner (2003) pp. 44, 108
  2. ^ Voight (2021) p. 141
  3. ^ Voight (2021) p. 142
  4. ^ We require that the local lattices be consistent, in the sense that there exists some R-lattice P with for all but finitely many primes.
  5. ^ Voight (2021), pp. 143–146
  6. ^ Voight 2021, p. 147 f.
  7. ^ Reiner (2003) p. 45
  • Voight, John (2021). Quaternion Algebras. Graduate Texts in Mathematics. Vol. 288. Springer. ISBN 978-3-030-56692-0.
  • Reiner, I. (2003). Maximal Orders. London Mathematical Society Monographs. New Series. Vol. 28. Oxford University Press. ISBN 0-19-852673-3. Zbl 1024.16008.