In functional analysis , every C* -algebra is isomorphic to a subalgebra of the C* -algebra B ( H ) {\displaystyle {\mathcal {B}}(H)} of bounded linear operators on some Hilbert space H . {\displaystyle H.} This article describes the spectral theory of closed normal subalgebras of B ( H ) {\displaystyle {\mathcal {B}}(H)} . A subalgebra A {\displaystyle A} of B ( H ) {\displaystyle {\mathcal {B}}(H)} is called normal if it is commutative and closed under the ∗ {\displaystyle \ast } operation: for all x , y ∈ A {\displaystyle x,y\in A} , we have x ∗ ∈ A {\displaystyle x^{\ast }\in A} and that x y = y x {\displaystyle xy=yx} .[ 1]
Resolution of identity [ edit ] Throughout, H {\displaystyle H} is a fixed Hilbert space .
A projection-valued measure on a measurable space ( X , Ω ) , {\displaystyle (X,\Omega ),} where Ω {\displaystyle \Omega } is a σ-algebra of subsets of X , {\displaystyle X,} is a mapping π : Ω → B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} such that for all ω ∈ Ω , {\displaystyle \omega \in \Omega ,} π ( ω ) {\displaystyle \pi (\omega )} is a self-adjoint projection on H {\displaystyle H} (that is, π ( ω ) {\displaystyle \pi (\omega )} is a bounded linear operator π ( ω ) : H → H {\displaystyle \pi (\omega ):H\to H} that satisfies π ( ω ) = π ( ω ) ∗ {\displaystyle \pi (\omega )=\pi (\omega )^{*}} and π ( ω ) ∘ π ( ω ) = π ( ω ) {\displaystyle \pi (\omega )\circ \pi (\omega )=\pi (\omega )} ) such that π ( X ) = Id H {\displaystyle \pi (X)=\operatorname {Id} _{H}\quad } (where Id H {\displaystyle \operatorname {Id} _{H}} is the identity operator of H {\displaystyle H} ) and for every x , y ∈ H , {\displaystyle x,y\in H,} the function Ω → C {\displaystyle \Omega \to \mathbb {C} } defined by ω ↦ ⟨ π ( ω ) x , y ⟩ {\displaystyle \omega \mapsto \langle \pi (\omega )x,y\rangle } is a complex measure on M {\displaystyle M} (that is, a complex-valued countably additive function).
A resolution of identity on a measurable space ( X , Ω ) {\displaystyle (X,\Omega )} is a function π : Ω → B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} such that for every ω 1 , ω 2 ∈ Ω {\displaystyle \omega _{1},\omega _{2}\in \Omega } :
π ( ∅ ) = 0 {\displaystyle \pi (\varnothing )=0} ; π ( X ) = Id H {\displaystyle \pi (X)=\operatorname {Id} _{H}} ; for every ω ∈ Ω , {\displaystyle \omega \in \Omega ,} π ( ω ) {\displaystyle \pi (\omega )} is a self-adjoint projection on H {\displaystyle H} ; for every x , y ∈ H , {\displaystyle x,y\in H,} the map π x , y : Ω → C {\displaystyle \pi _{x,y}:\Omega \to \mathbb {C} } defined by π x , y ( ω ) = ⟨ π ( ω ) x , y ⟩ {\displaystyle \pi _{x,y}(\omega )=\langle \pi (\omega )x,y\rangle } is a complex measure on Ω {\displaystyle \Omega } ; π ( ω 1 ∩ ω 2 ) = π ( ω 1 ) ∘ π ( ω 2 ) {\displaystyle \pi \left(\omega _{1}\cap \omega _{2}\right)=\pi \left(\omega _{1}\right)\circ \pi \left(\omega _{2}\right)} ; if ω 1 ∩ ω 2 = ∅ {\displaystyle \omega _{1}\cap \omega _{2}=\varnothing } then π ( ω 1 ∪ ω 2 ) = π ( ω 1 ) + π ( ω 2 ) {\displaystyle \pi \left(\omega _{1}\cup \omega _{2}\right)=\pi \left(\omega _{1}\right)+\pi \left(\omega _{2}\right)} ; If Ω {\displaystyle \Omega } is the σ {\displaystyle \sigma } -algebra of all Borels sets on a Hausdorff locally compact (or compact) space, then the following additional requirement is added:
for every x , y ∈ H , {\displaystyle x,y\in H,} the map π x , y : Ω → C {\displaystyle \pi _{x,y}:\Omega \to \mathbb {C} } is a regular Borel measure (this is automatically satisfied on compact metric spaces). Conditions 2, 3, and 4 imply that π {\displaystyle \pi } is a projection-valued measure.
Throughout, let π {\displaystyle \pi } be a resolution of identity. For all x ∈ H , {\displaystyle x\in H,} π x , x : Ω → C {\displaystyle \pi _{x,x}:\Omega \to \mathbb {C} } is a positive measure on Ω {\displaystyle \Omega } with total variation ‖ π x , x ‖ = π x , x ( X ) = ‖ x ‖ 2 {\displaystyle \left\|\pi _{x,x}\right\|=\pi _{x,x}(X)=\|x\|^{2}} and that satisfies π x , x ( ω ) = ⟨ π ( ω ) x , x ⟩ = ‖ π ( ω ) x ‖ 2 {\displaystyle \pi _{x,x}(\omega )=\langle \pi (\omega )x,x\rangle =\|\pi (\omega )x\|^{2}} for all ω ∈ Ω . {\displaystyle \omega \in \Omega .}
For every ω 1 , ω 2 ∈ Ω {\displaystyle \omega _{1},\omega _{2}\in \Omega } :
π ( ω 1 ) π ( ω 2 ) = π ( ω 2 ) π ( ω 1 ) {\displaystyle \pi \left(\omega _{1}\right)\pi \left(\omega _{2}\right)=\pi \left(\omega _{2}\right)\pi \left(\omega _{1}\right)} (since both are equal to π ( ω 1 ∩ ω 2 ) {\displaystyle \pi \left(\omega _{1}\cap \omega _{2}\right)} ). If ω 1 ∩ ω 2 = ∅ {\displaystyle \omega _{1}\cap \omega _{2}=\varnothing } then the ranges of the maps π ( ω 1 ) {\displaystyle \pi \left(\omega _{1}\right)} and π ( ω 2 ) {\displaystyle \pi \left(\omega _{2}\right)} are orthogonal to each other and π ( ω 1 ) π ( ω 2 ) = 0 = π ( ω 2 ) π ( ω 1 ) . {\displaystyle \pi \left(\omega _{1}\right)\pi \left(\omega _{2}\right)=0=\pi \left(\omega _{2}\right)\pi \left(\omega _{1}\right).} π : Ω → B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} is finitely additive. If ω 1 , ω 2 , … {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω {\displaystyle \omega } and if π ( ω i ) = 0 {\displaystyle \pi \left(\omega _{i}\right)=0} for all i {\displaystyle i} then π ( ω ) = 0. {\displaystyle \pi (\omega )=0.} However, π : Ω → B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} is countably additive only in trivial situations as is now described: suppose that ω 1 , ω 2 , … {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω {\displaystyle \omega } and that the partial sums ∑ i = 1 n π ( ω i ) {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)} converge to π ( ω ) {\displaystyle \pi (\omega )} in B ( H ) {\displaystyle {\mathcal {B}}(H)} (with its norm topology) as n → ∞ {\displaystyle n\to \infty } ; then since the norm of any projection is either 0 {\displaystyle 0} or ≥ 1 , {\displaystyle \geq 1,} the partial sums cannot form a Cauchy sequence unless all but finitely many of the π ( ω i ) {\displaystyle \pi \left(\omega _{i}\right)} are 0. {\displaystyle 0.} For any fixed x ∈ H , {\displaystyle x\in H,} the map π x : Ω → H {\displaystyle \pi _{x}:\Omega \to H} defined by π x ( ω ) := π ( ω ) x {\displaystyle \pi _{x}(\omega ):=\pi (\omega )x} is a countably additive H {\displaystyle H} -valued measure on Ω . {\displaystyle \Omega .} Here countably additive means that whenever ω 1 , ω 2 , … {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω , {\displaystyle \omega ,} then the partial sums ∑ i = 1 n π ( ω i ) x {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)x} converge to π ( ω ) x {\displaystyle \pi (\omega )x} in H . {\displaystyle H.} Said more succinctly, ∑ i = 1 ∞ π ( ω i ) x = π ( ω ) x . {\displaystyle \sum _{i=1}^{\infty }\pi \left(\omega _{i}\right)x=\pi (\omega )x.} In other words, for every pairwise disjoint family of elements ( ω i ) i = 1 ∞ ⊆ Ω {\displaystyle \left(\omega _{i}\right)_{i=1}^{\infty }\subseteq \Omega } whose union is ω ∞ ∈ Ω {\displaystyle \omega _{\infty }\in \Omega } , then ∑ i = 1 n π ( ω i ) = π ( ⋃ i = 1 n ω i ) {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)=\pi \left(\bigcup _{i=1}^{n}\omega _{i}\right)} (by finite additivity of π {\displaystyle \pi } ) converges to π ( ω ∞ ) {\displaystyle \pi \left(\omega _{\infty }\right)} in the strong operator topology on B ( H ) {\displaystyle {\mathcal {B}}(H)} : for every x ∈ H {\displaystyle x\in H} , the sequence of elements ∑ i = 1 n π ( ω i ) x {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)x} converges to π ( ω ∞ ) x {\displaystyle \pi \left(\omega _{\infty }\right)x} in H {\displaystyle H} (with respect to the norm topology). L∞ (π) - space of essentially bounded function[ edit ] The π : Ω → B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} be a resolution of identity on ( X , Ω ) . {\displaystyle (X,\Omega ).}
Essentially bounded functions [ edit ] Suppose f : X → C {\displaystyle f:X\to \mathbb {C} } is a complex-valued Ω {\displaystyle \Omega } -measurable function. There exists a unique largest open subset V f {\displaystyle V_{f}} of C {\displaystyle \mathbb {C} } (ordered under subset inclusion) such that π ( f − 1 ( V f ) ) = 0. {\displaystyle \pi \left(f^{-1}\left(V_{f}\right)\right)=0.} To see why, let D 1 , D 2 , … {\displaystyle D_{1},D_{2},\ldots } be a basis for C {\displaystyle \mathbb {C} } 's topology consisting of open disks and suppose that D i 1 , D i 2 , … {\displaystyle D_{i_{1}},D_{i_{2}},\ldots } is the subsequence (possibly finite) consisting of those sets such that π ( f − 1 ( D i k ) ) = 0 {\displaystyle \pi \left(f^{-1}\left(D_{i_{k}}\right)\right)=0} ; then D i 1 ∪ D i 2 ∪ ⋯ = V f . {\displaystyle D_{i_{1}}\cup D_{i_{2}}\cup \cdots =V_{f}.} Note that, in particular, if D {\displaystyle D} is an open subset of C {\displaystyle \mathbb {C} } such that D ∩ Im f = ∅ {\displaystyle D\cap \operatorname {Im} f=\varnothing } then π ( f − 1 ( D ) ) = π ( ∅ ) = 0 {\displaystyle \pi \left(f^{-1}(D)\right)=\pi (\varnothing )=0} so that D ⊆ V f {\displaystyle D\subseteq V_{f}} (although there are other ways in which π ( f − 1 ( D ) ) {\displaystyle \pi \left(f^{-1}(D)\right)} may equal 0 ). Indeed, C ∖ cl ( Im f ) ⊆ V f . {\displaystyle \mathbb {C} \setminus \operatorname {cl} (\operatorname {Im} f)\subseteq V_{f}.}
The essential range of f {\displaystyle f} is defined to be the complement of V f . {\displaystyle V_{f}.} It is the smallest closed subset of C {\displaystyle \mathbb {C} } that contains f ( x ) {\displaystyle f(x)} for almost all x ∈ X {\displaystyle x\in X} (that is, for all x ∈ X {\displaystyle x\in X} except for those in some set ω ∈ Ω {\displaystyle \omega \in \Omega } such that π ( ω ) = 0 {\displaystyle \pi (\omega )=0} ). The essential range is a closed subset of C {\displaystyle \mathbb {C} } so that if it is also a bounded subset of C {\displaystyle \mathbb {C} } then it is compact.
The function f {\displaystyle f} is essentially bounded if its essential range is bounded, in which case define its essential supremum , denoted by ‖ f ‖ ∞ , {\displaystyle \|f\|^{\infty },} to be the supremum of all | λ | {\displaystyle |\lambda |} as λ {\displaystyle \lambda } ranges over the essential range of f . {\displaystyle f.}
Space of essentially bounded functions [ edit ] Let B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} be the vector space of all bounded complex-valued Ω {\displaystyle \Omega } -measurable functions f : X → C , {\displaystyle f:X\to \mathbb {C} ,} which becomes a Banach algebra when normed by ‖ f ‖ ∞ := sup x ∈ X | f ( x ) | . {\displaystyle \|f\|_{\infty }:=\sup _{x\in X}|f(x)|.} The function ‖ ⋅ ‖ ∞ {\displaystyle \|\,\cdot \,\|^{\infty }} is a seminorm on B ( X , Ω ) , {\displaystyle {\mathcal {B}}(X,\Omega ),} but not necessarily a norm. The kernel of this seminorm, N ∞ := { f ∈ B ( X , Ω ) : ‖ f ‖ ∞ = 0 } , {\displaystyle N^{\infty }:=\left\{f\in {\mathcal {B}}(X,\Omega ):\|f\|^{\infty }=0\right\},} is a vector subspace of B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} that is a closed two-sided ideal of the Banach algebra ( B ( X , Ω ) , ‖ ⋅ ‖ ∞ ) . {\displaystyle \left({\mathcal {B}}(X,\Omega ),\|\cdot \|_{\infty }\right).} Hence the quotient of B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} by N ∞ {\displaystyle N^{\infty }} is also a Banach algebra, denoted by L ∞ ( π ) := B ( X , Ω ) / N ∞ {\displaystyle L^{\infty }(\pi ):={\mathcal {B}}(X,\Omega )/N^{\infty }} where the norm of any element f + N ∞ ∈ L ∞ ( π ) {\displaystyle f+N^{\infty }\in L^{\infty }(\pi )} is equal to ‖ f ‖ ∞ {\displaystyle \|f\|^{\infty }} (since if f + N ∞ = g + N ∞ {\displaystyle f+N^{\infty }=g+N^{\infty }} then ‖ f ‖ ∞ = ‖ g ‖ ∞ {\displaystyle \|f\|^{\infty }=\|g\|^{\infty }} ) and this norm makes L ∞ ( π ) {\displaystyle L^{\infty }(\pi )} into a Banach algebra. The spectrum of f + N ∞ {\displaystyle f+N^{\infty }} in L ∞ ( π ) {\displaystyle L^{\infty }(\pi )} is the essential range of f . {\displaystyle f.} This article will follow the usual practice of writing f {\displaystyle f} rather than f + N ∞ {\displaystyle f+N^{\infty }} to represent elements of L ∞ ( π ) . {\displaystyle L^{\infty }(\pi ).}
Theorem — Let π : Ω → B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} be a resolution of identity on ( X , Ω ) . {\displaystyle (X,\Omega ).} There exists a closed normal subalgebra A {\displaystyle A} of B ( H ) {\displaystyle {\mathcal {B}}(H)} and an isometric * -isomorphism Ψ : L ∞ ( π ) → A {\displaystyle \Psi :L^{\infty }(\pi )\to A} satisfying the following properties:
⟨ Ψ ( f ) x , y ⟩ = ∫ X f d π x , y {\displaystyle \langle \Psi (f)x,y\rangle =\int _{X}f\operatorname {d} \pi _{x,y}} for all x , y ∈ H {\displaystyle x,y\in H} and f ∈ L ∞ ( π ) , {\displaystyle f\in L^{\infty }(\pi ),} which justifies the notation Ψ ( f ) = ∫ X f d π {\displaystyle \Psi (f)=\int _{X}f\operatorname {d} \pi } ; ‖ Ψ ( f ) x ‖ 2 = ∫ X | f | 2 d π x , x {\displaystyle \|\Psi (f)x\|^{2}=\int _{X}|f|^{2}\operatorname {d} \pi _{x,x}} for all x ∈ H {\displaystyle x\in H} and f ∈ L ∞ ( π ) {\displaystyle f\in L^{\infty }(\pi )} ; an operator R ∈ B ( H ) {\displaystyle R\in \mathbb {B} (H)} commutes with every element of Im π {\displaystyle \operatorname {Im} \pi } if and only if it commutes with every element of A = Im Ψ . {\displaystyle A=\operatorname {Im} \Psi .} if f {\displaystyle f} is a simple function equal to f = ∑ i = 1 n λ i 1 ω i , {\displaystyle f=\sum _{i=1}^{n}\lambda _{i}\mathbb {1} _{\omega _{i}},} where ω 1 , … ω n {\displaystyle \omega _{1},\ldots \omega _{n}} is a partition of X {\displaystyle X} and the λ i {\displaystyle \lambda _{i}} are complex numbers, then Ψ ( f ) = ∑ i = 1 n λ i π ( ω i ) {\displaystyle \Psi (f)=\sum _{i=1}^{n}\lambda _{i}\pi \left(\omega _{i}\right)} (here 1 {\displaystyle \mathbb {1} } is the characteristic function); if f {\displaystyle f} is the limit (in the norm of L ∞ ( π ) {\displaystyle L^{\infty }(\pi )} ) of a sequence of simple functions s 1 , s 2 , … {\displaystyle s_{1},s_{2},\ldots } in L ∞ ( π ) {\displaystyle L^{\infty }(\pi )} then ( Ψ ( s i ) ) i = 1 ∞ {\displaystyle \left(\Psi \left(s_{i}\right)\right)_{i=1}^{\infty }} converges to Ψ ( f ) {\displaystyle \Psi (f)} in B ( H ) {\displaystyle {\mathcal {B}}(H)} and ‖ Ψ ( f ) ‖ = ‖ f ‖ ∞ {\displaystyle \|\Psi (f)\|=\|f\|^{\infty }} ; ( ‖ f ‖ ∞ ) 2 = sup ‖ h ‖ ≤ 1 ∫ X d π h , h {\displaystyle \left(\|f\|^{\infty }\right)^{2}=\sup _{\|h\|\leq 1}\int _{X}\operatorname {d} \pi _{h,h}} for every f ∈ L ∞ ( π ) . {\displaystyle f\in L^{\infty }(\pi ).} The maximal ideal space of a Banach algebra A {\displaystyle A} is the set of all complex homomorphisms A → C , {\displaystyle A\to \mathbb {C} ,} which we'll denote by σ A . {\displaystyle \sigma _{A}.} For every T {\displaystyle T} in A , {\displaystyle A,} the Gelfand transform of T {\displaystyle T} is the map G ( T ) : σ A → C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } defined by G ( T ) ( h ) := h ( T ) . {\displaystyle G(T)(h):=h(T).} σ A {\displaystyle \sigma _{A}} is given the weakest topology making every G ( T ) : σ A → C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } continuous. With this topology, σ A {\displaystyle \sigma _{A}} is a compact Hausdorff space and every T {\displaystyle T} in A , {\displaystyle A,} G ( T ) {\displaystyle G(T)} belongs to C ( σ A ) , {\displaystyle C\left(\sigma _{A}\right),} which is the space of continuous complex-valued functions on σ A . {\displaystyle \sigma _{A}.} The range of G ( T ) {\displaystyle G(T)} is the spectrum σ ( T ) {\displaystyle \sigma (T)} and that the spectral radius is equal to max { | G ( T ) ( h ) | : h ∈ σ A } , {\displaystyle \max \left\{|G(T)(h)|:h\in \sigma _{A}\right\},} which is ≤ ‖ T ‖ . {\displaystyle \leq \|T\|.}
Theorem — Suppose A {\displaystyle A} is a closed normal subalgebra of B ( H ) {\displaystyle {\mathcal {B}}(H)} that contains the identity operator Id H {\displaystyle \operatorname {Id} _{H}} and let σ = σ A {\displaystyle \sigma =\sigma _{A}} be the maximal ideal space of A . {\displaystyle A.} Let Ω {\displaystyle \Omega } be the Borel subsets of σ . {\displaystyle \sigma .} For every T {\displaystyle T} in A , {\displaystyle A,} let G ( T ) : σ A → C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } denote the Gelfand transform of T {\displaystyle T} so that G {\displaystyle G} is an injective map G : A → C ( σ A ) . {\displaystyle G:A\to C\left(\sigma _{A}\right).} There exists a unique resolution of identity π : Ω → A {\displaystyle \pi :\Omega \to A} that satisfies: ⟨ T x , y ⟩ = ∫ σ A G ( T ) d π x , y for all x , y ∈ H and all T ∈ A ; {\displaystyle \langle Tx,y\rangle =\int _{\sigma _{A}}G(T)\operatorname {d} \pi _{x,y}\quad {\text{ for all }}x,y\in H{\text{ and all }}T\in A;} the notation T = ∫ σ A G ( T ) d π {\displaystyle T=\int _{\sigma _{A}}G(T)\operatorname {d} \pi } is used to summarize this situation. Let I : Im G → A {\displaystyle I:\operatorname {Im} G\to A} be the inverse of the Gelfand transform G : A → C ( σ A ) {\displaystyle G:A\to C\left(\sigma _{A}\right)} where Im G {\displaystyle \operatorname {Im} G} can be canonically identified as a subspace of L ∞ ( π ) . {\displaystyle L^{\infty }(\pi ).} Let B {\displaystyle B} be the closure (in the norm topology of B ( H ) {\displaystyle {\mathcal {B}}(H)} ) of the linear span of Im π . {\displaystyle \operatorname {Im} \pi .} Then the following are true:
B {\displaystyle B} is a closed subalgebra of B ( H ) {\displaystyle {\mathcal {B}}(H)} containing A . {\displaystyle A.} There exists a (linear multiplicative) isometric * -isomorphism Φ : L ∞ ( π ) → B {\displaystyle \Phi :L^{\infty }(\pi )\to B} extending I : Im G → A {\displaystyle I:\operatorname {Im} G\to A} such that Φ f = ∫ σ A f d π {\displaystyle \Phi f=\int _{\sigma _{A}}f\operatorname {d} \pi } for all f ∈ L ∞ ( π ) . {\displaystyle f\in L^{\infty }(\pi ).} Recall that the notation Φ f = ∫ σ A f d π {\displaystyle \Phi f=\int _{\sigma _{A}}f\operatorname {d} \pi } means that ⟨ ( Φ f ) x , y ⟩ = ∫ σ A f d π x , y {\displaystyle \langle (\Phi f)x,y\rangle =\int _{\sigma _{A}}f\operatorname {d} \pi _{x,y}} for all x , y ∈ H {\displaystyle x,y\in H} ; Note in particular that T = ∫ σ A G ( T ) d π = Φ ( G ( T ) ) {\displaystyle T=\int _{\sigma _{A}}G(T)\operatorname {d} \pi =\Phi (G(T))} for all T ∈ A . {\displaystyle T\in A.} Explicitly, Φ {\displaystyle \Phi } satisfies Φ ( f ¯ ) = ( Φ f ) ∗ {\displaystyle \Phi \left({\overline {f}}\right)=(\Phi f)^{*}} and ‖ Φ f ‖ = ‖ f ‖ ∞ {\displaystyle \|\Phi f\|=\|f\|^{\infty }} for every f ∈ L ∞ ( π ) {\displaystyle f\in L^{\infty }(\pi )} (so if f {\displaystyle f} is real valued then Φ ( f ) {\displaystyle \Phi (f)} is self-adjoint). If ω ⊆ σ A {\displaystyle \omega \subseteq \sigma _{A}} is open and nonempty (which implies that ω ∈ Ω {\displaystyle \omega \in \Omega } ) then π ( ω ) ≠ 0. {\displaystyle \pi (\omega )\neq 0.} A bounded linear operator S ∈ B ( H ) {\displaystyle S\in {\mathcal {B}}(H)} commutes with every element of A {\displaystyle A} if and only if it commutes with every element of Im π . {\displaystyle \operatorname {Im} \pi .} The above result can be specialized to a single normal bounded operator.
^ Rudin, Walter (1991). Functional Analysis (2nd ed.). New York: McGraw Hill. pp. 292– 293. ISBN 0-07-100944-2 .
Basic concepts Main results Special Elements/Operators Spectrum Decomposition Spectral Theorem Special algebras Finite-Dimensional Generalizations Miscellaneous Examples Applications
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics