Strontium disilicide

Strontium disilicide
Names
Other names
Strontium silicide, strontium(II) silicide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.032.031 Edit this at Wikidata
EC Number
  • 235-248-0
  • InChI=1S/2Si.Sr/q2*-1;+2
    Key: DXKAKWDPPFFMSM-UHFFFAOYSA-N
  • [Si-].[Si-].[Sr+2]
Properties
Si2Sr
Molar mass 143.79 g·mol−1
Appearance silver-gray crystals[1]
Density 3.35 g/cm3
Melting point 1,100 °C (2,010 °F; 1,370 K)
reacts with water
Structure
Cubic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Strontium disilicide is a binary inorganic compound of strontium and silicon with the chemical formula SrSi2.[2][3]

Synthesis

[edit]

Synthesis of strontium disilicide can be by fusion of strontium oxide or strontium carbonate with silicon, or silicon oxide and with coal:[4]

SrO + 2Si + С → SrSi2 + CO
SrCO3 + 2SiO2 + 4C → SrSi2 + 4CO + CO2

Physical properties

[edit]

Strontium disilicide forms silver-gray crystals of the cubic system[5], space group P4132.[6] The unit cell parameters are a = 6.540 Å. The density is measured at 3.40 kg/l but based on the unit cell size, it should be 3.43  kg/l. The silicon atoms form a three-dimensional lattice with the smallest Si-Si distance being 2.41 Å which is slightly more than in solid silicon. Si-Si-Si angles ∠ are 113.03°. Each silicon atom connects to three other silicon atoms. Eight silicon atoms surround each strontium atom, six at 3.21 Å and two at 3.43 Å.[7]

Chemical properties

[edit]

Water decomposes the compound:[8]

SrSi2 + 6H2O → Sr(OH)2 + 2SiO2 + 5H2

Also, the compound reacts with mineral acids.

Uses

[edit]

SrSi2 is reported to be a narrow-gap semiconductor or even a Weyl semimetal, with holes as the dominant charge carriers. The potential applications include thermoelectric devices and other applications where its unique properties can be utilized.[9]

References

[edit]
  1. ^ Lide, David R. (29 June 2004). CRC Handbook of Chemistry and Physics, 85th Edition. CRC Press. p. 4-87. ISBN 978-0-8493-0485-9. Retrieved 25 June 2025.
  2. ^ Park, Chong Rae (12 March 2019). Advanced Thermoelectric Materials. John Wiley & Sons. p. 4-90. ISBN 978-1-119-40736-2. Retrieved 25 June 2025.
  3. ^ Comprehensive Inorganic Chemistry II: From Elements to Applications. Newnes. 23 July 2013. p. 366. ISBN 978-0-08-096529-1. Retrieved 25 June 2025.
  4. ^ Berezhnoĭ, Anatoliĭ Semenovich (1960). Silicon and Its Binary Systems: Translated from Russian. Consultants Bureau. p. 61. Retrieved 25 June 2025.
  5. ^ Addison, C. C. (31 October 2007). Inorganic Chemistry of the Main-Group Elements: Volume 1. Royal Society of Chemistry. p. 226. ISBN 978-1-84755-637-0. Retrieved 25 June 2025.
  6. ^ Donnay, Joseph Désiré Hubert (1973). Crystal Data: Inorganic compounds. National Bureau of Standards. p. C-163. Retrieved 25 June 2025.
  7. ^ Janzon, K.; Schäfer, H.; Weiss, Armin (March 1965). "Crystal Structure of Strontium Disilicide". Angewandte Chemie International Edition in English. 4 (3): 245. doi:10.1002/anie.196502452.
  8. ^ Worthington, George (1902). Industrial Engineering. McGraw-Hill Publishing Company. p. 360. Retrieved 25 June 2025.
  9. ^ Singh, Shiva Kumar; Imai, Motoharu (1 December 2020). "Thermoelectric properties of cubic Ba-substituted strontium disilicide, Sr1-xBaxSi2, with Ba content above solid solubility limit". Intermetallics. 127: 106981. doi:10.1016/j.intermet.2020.106981. ISSN 0966-9795. Retrieved 25 June 2025.