In the mathematical fields of category theory and abstract algebra , a subquotient is a quotient object of a subobject . Subquotients are particularly important in abelian categories , and in group theory , where they are also known as sections , though this conflicts with a different meaning in category theory.
So in the algebraic structure of groups, H {\displaystyle H} is a subquotient of G {\displaystyle G} if there exists a subgroup G ′ {\displaystyle G'} of G {\displaystyle G} and a normal subgroup G ″ {\displaystyle G''} of G ′ {\displaystyle G'} so that H {\displaystyle H} is isomorphic to G ′ / G ″ {\displaystyle G'/G''} .
In the literature about sporadic groups wordings like “ H {\displaystyle H} is involved in G {\displaystyle G} “[ 1] can be found with the apparent meaning of “ H {\displaystyle H} is a subquotient of G {\displaystyle G} “.
As in the context of subgroups, in the context of subquotients the term trivial may be used for the two subquotients G {\displaystyle G} and { 1 } {\displaystyle \{1\}} which are present in every group G {\displaystyle G} .[citation needed ]
A quotient of a subrepresentation of a representation (of, say, a group) might be called a subquotient representation; e. g., Harish-Chandra 's subquotient theorem.[ 2]
There are subquotients of groups which are neither subgroup nor quotient of it. E. g. according to article Sporadic group , Fi 22 has a double cover which is a subgroup of Fi 23 , so it is a subquotient of Fi 23 without being a subgroup or quotient of it.
The relation subquotient of is an order relation – which shall be denoted by ⪯ {\displaystyle \preceq } . It shall be proved for groups.
Notation For group G {\displaystyle G} , subgroup G ′ {\displaystyle G'} of G {\displaystyle G} ( ⇔: G ′ ≤ G ) {\displaystyle (\Leftrightarrow :G'\leq G)} and normal subgroup G ″ {\displaystyle G''} of G ′ {\displaystyle G'} ( ⇔: G ″ ⊲ G ′ ) {\displaystyle (\Leftrightarrow :G''\vartriangleleft G')} the quotient group H := G ′ / G ″ {\displaystyle H:=G'/G''} is a subquotient of G {\displaystyle G} , i. e. H ⪯ G {\displaystyle H\preceq G} . Reflexivity : G ⪯ G {\displaystyle G\preceq G} , i. e. every element is related to itself. Indeed, G {\displaystyle G} is isomorphic to the subquotient G / { 1 } {\displaystyle G/\{1\}} of G {\displaystyle G} . Antisymmetry : if G ⪯ H {\displaystyle G\preceq H} and H ⪯ G {\displaystyle H\preceq G} then G ≅ H {\displaystyle G\cong H} , i. e. no two distinct elements precede each other. Indeed, a comparison of the group orders of G {\displaystyle G} and H {\displaystyle H} then yields | G | = | H | {\displaystyle |G|=|H|} from which G ≅ H {\displaystyle G\cong H} . Transitivity : if H ′ / H ″ ⪯ H {\displaystyle H'/H''\preceq H} and H ⪯ G {\displaystyle H\preceq G} then H ′ / H ″ ⪯ G {\displaystyle H'/H''\preceq G} . Proof of transitivity for groups [ edit ] Let H ′ / H ″ {\displaystyle H'/H''} be subquotient of H {\displaystyle H} , furthermore H := G ′ / G ″ {\displaystyle H:=G'/G''} be subquotient of G {\displaystyle G} and φ : G ′ → H {\displaystyle \varphi \colon G'\to H} be the canonical homomorphism . Then all vertical ( ↓ {\displaystyle \downarrow } ) maps φ : X → Y , x ↦ x G ″ {\displaystyle \varphi \colon X\to Y,\;x\mapsto x\,G''}
G ″ {\displaystyle G''} ≤ {\displaystyle \leq } φ − 1 ( H ″ ) {\displaystyle \varphi ^{-1}(H'')} ≤ {\displaystyle \leq } φ − 1 ( H ′ ) {\displaystyle \varphi ^{-1}(H')} ⊲ {\displaystyle \vartriangleleft } G ′ {\displaystyle G'} φ : {\displaystyle \varphi \!:} ↓ {\displaystyle {\Big \downarrow }} ↓ {\displaystyle {\Big \downarrow }} ↓ {\displaystyle {\Big \downarrow }} ↓ {\displaystyle {\Big \downarrow }} { 1 } {\displaystyle \{1\}} ≤ {\displaystyle \leq } H ″ {\displaystyle H''} ⊲ {\displaystyle \vartriangleleft } H ′ {\displaystyle H'} ⊲ {\displaystyle \vartriangleleft } H {\displaystyle H}
are surjective for the respective pairs
( X , Y ) ∈ {\displaystyle (X,Y)\;\;\;\in } { ( G ″ , { 1 } ) {\displaystyle {\Bigl \{}{\bigl (}G'',\{1\}{\bigr )}{\Bigr .}} , {\displaystyle ,} ( φ − 1 ( H ″ ) , H ″ ) {\displaystyle {\bigl (}\varphi ^{-1}(H''),H''{\bigr )}} , {\displaystyle ,} ( φ − 1 ( H ′ ) , H ′ ) {\displaystyle {\bigl (}\varphi ^{-1}(H'),H'{\bigr )}} , {\displaystyle ,} ( G ′ , H ) } . {\displaystyle {\Bigl .}{\bigl (}G',H{\bigr )}{\Bigr \}}.}
The preimages φ − 1 ( H ′ ) {\displaystyle \varphi ^{-1}\left(H'\right)} and φ − 1 ( H ″ ) {\displaystyle \varphi ^{-1}\left(H''\right)} are both subgroups of G ′ {\displaystyle G'} containing G ″ , {\displaystyle G'',} and it is φ ( φ − 1 ( H ′ ) ) = H ′ {\displaystyle \varphi \left(\varphi ^{-1}\left(H'\right)\right)=H'} and φ ( φ − 1 ( H ″ ) ) = H ″ , {\displaystyle \varphi \left(\varphi ^{-1}\left(H''\right)\right)=H'',} because every h ∈ H {\displaystyle h\in H} has a preimage g ∈ G ′ {\displaystyle g\in G'} with φ ( g ) = h . {\displaystyle \varphi (g)=h.} Moreover, the subgroup φ − 1 ( H ″ ) {\displaystyle \varphi ^{-1}\left(H''\right)} is normal in φ − 1 ( H ′ ) . {\displaystyle \varphi ^{-1}\left(H'\right).}
As a consequence, the subquotient H ′ / H ″ {\displaystyle H'/H''} of H {\displaystyle H} is a subquotient of G {\displaystyle G} in the form H ′ / H ″ ≅ φ − 1 ( H ′ ) / φ − 1 ( H ″ ) . {\displaystyle H'/H''\cong \varphi ^{-1}\left(H'\right)/\varphi ^{-1}\left(H''\right).}
Relation to cardinal order [ edit ] In constructive set theory , where the law of excluded middle does not necessarily hold, one can consider the relation subquotient of as replacing the usual order relation (s) on cardinals . When one has the law of the excluded middle, then a subquotient Y {\displaystyle Y} of X {\displaystyle X} is either the empty set or there is an onto function X → Y {\displaystyle X\to Y} . This order relation is traditionally denoted ≤ ∗ . {\displaystyle \leq ^{\ast }.} If additionally the axiom of choice holds, then Y {\displaystyle Y} has a one-to-one function to X {\displaystyle X} and this order relation is the usual ≤ {\displaystyle \leq } on corresponding cardinals.
^ Griess, Robert L. (1982), "The Friendly Giant" , Inventiones Mathematicae , 69 : 1−102, Bibcode :1982InMat..69....1G , doi :10.1007/BF01389186 , hdl :2027.42/46608 , S2CID 123597150 ^ Dixmier, Jacques (1996) [1974], Enveloping algebras , Graduate Studies in Mathematics , vol. 11, Providence, R.I.: American Mathematical Society , ISBN 978-0-8218-0560-2 , MR 0498740 p. 310