Mathematical functions related to Weierstrass's elliptic function
In mathematics , the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function . They are named for Karl Weierstrass . The relation between the sigma, zeta, and ℘ {\displaystyle \wp } functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant.
Weierstrass sigma function [ edit ] Plot of the sigma function using Domain coloring . The Weierstrass sigma function associated to a two-dimensional lattice Λ ⊂ C {\displaystyle \Lambda \subset \mathbb {C} } is defined to be the product
σ ( z ; Λ ) = z ∏ w ∈ Λ ∗ ( 1 − z w ) exp ( z w + 1 2 ( z w ) 2 ) = z ∏ m , n = − ∞ { m , n } ≠ 0 ∞ ( 1 − z m ω 1 + n ω 2 ) exp ( z m ω 1 + n ω 2 + 1 2 ( z m ω 1 + n ω 2 ) 2 ) {\displaystyle {\begin{aligned}\operatorname {\sigma } {(z;\Lambda )}&=z\prod _{w\in \Lambda ^{*}}\left(1-{\frac {z}{w}}\right)\exp \left({\frac {z}{w}}+{\frac {1}{2}}\left({\frac {z}{w}}\right)^{2}\right)\\[5mu]&=z\prod _{\begin{smallmatrix}m,n=-\infty \\\{m,n\}\neq 0\end{smallmatrix}}^{\infty }\left(1-{\frac {z}{m\omega _{1}+n\omega _{2}}}\right)\exp {\left({\frac {z}{m\omega _{1}+n\omega _{2}}}+{\frac {1}{2}}\left({\frac {z}{m\omega _{1}+n\omega _{2}}}\right)^{2}\right)}\end{aligned}}} where Λ ∗ {\displaystyle \Lambda ^{*}} denotes Λ − { 0 } {\displaystyle \Lambda -\{0\}} and ( ω 1 , ω 2 ) {\displaystyle (\omega _{1},\omega _{2})} is a fundamental pair of periods .
Through careful manipulation of the Weierstrass factorization theorem as it relates also to the sine function, another potentially more manageable infinite product definition is
σ ( z ; Λ ) = ω i π exp ( η i z 2 ω i ) sin ( π z ω i ) ∏ n = 1 ∞ ( 1 − sin 2 ( π z / ω i ) sin 2 ( n π ω j / ω i ) ) {\displaystyle \operatorname {\sigma } {(z;\Lambda )}={\frac {\omega _{i}}{\pi }}\exp {\left({\frac {\eta _{i}z^{2}}{\omega _{i}}}\right)}\sin {\left({\frac {\pi z}{\omega _{i}}}\right)}\prod _{n=1}^{\infty }\left(1-{\frac {\sin ^{2}{\left(\pi z/\omega _{i}\right)}}{\sin ^{2}{\left(n\pi \omega _{j}/\omega _{i}\right)}}}\right)} for any { i , j } ∈ { 1 , 2 , 3 } {\displaystyle \{i,j\}\in \{1,2,3\}} with i ≠ j {\displaystyle i\neq j} and where we have used the notation η i = ζ ( ω i / 2 ; Λ ) {\displaystyle \eta _{i}=\zeta (\omega _{i}/2;\Lambda )} (see zeta function below). Also it is a "quasi-periodic" function, with the following property:
σ ( z + 2 ω i ) = − e 2 η i ( z + ω i ) σ ( z ) {\displaystyle \sigma (z+2\omega _{i})=-e^{2\eta _{i}(z+\omega _{i})}\sigma (z)}
The sigma function can be used to represent an elliptic function : f ( z + ω i ) = f ( z ) i ∈ { 1 , … , n } {\displaystyle f(z+\omega _{i})=f(z)\quad i\in \{1,\ldots ,n\}} when knowing its zeros and poles that lie in the period parallelogram:
f ( z ) = c ∏ j = 1 n σ ( z − a j ) σ ( z − b j ) {\displaystyle f(z)=c\prod _{j=1}^{n}{\frac {\sigma (z-a_{j})}{\sigma (z-b_{j})}}} Where c {\displaystyle c} is a constant in C {\displaystyle \mathbb {C} } and a j {\displaystyle a_{j}} are the zeros in the parallelogram and b j {\displaystyle b_{j}} are the poles
Weierstrass zeta function [ edit ] Plot of the zeta function using Domain coloring The Weierstrass zeta function is defined by the sum
ζ ( z ; Λ ) = σ ′ ( z ; Λ ) σ ( z ; Λ ) = 1 z + ∑ w ∈ Λ ∗ ( 1 z − w + 1 w + z w 2 ) . {\displaystyle \operatorname {\zeta } {(z;\Lambda )}={\frac {\sigma '(z;\Lambda )}{\sigma (z;\Lambda )}}={\frac {1}{z}}+\sum _{w\in \Lambda ^{*}}\left({\frac {1}{z-w}}+{\frac {1}{w}}+{\frac {z}{w^{2}}}\right).} The Weierstrass zeta function is the logarithmic derivative of the sigma-function. The zeta function can be rewritten as:
ζ ( z ; Λ ) = 1 z − ∑ k = 1 ∞ G 2 k + 2 ( Λ ) z 2 k + 1 {\displaystyle \operatorname {\zeta } {(z;\Lambda )}={\frac {1}{z}}-\sum _{k=1}^{\infty }{\mathcal {G}}_{2k+2}(\Lambda )z^{2k+1}} where G 2 k + 2 {\displaystyle {\mathcal {G}}_{2k+2}} is the Eisenstein series of weight 2k + 2.
The derivative of the zeta function is − ℘ ( z ) {\displaystyle -\wp (z)} , where ℘ ( z ) {\displaystyle \wp (z)} is the Weierstrass elliptic function .
The Weierstrass zeta function should not be confused with the Riemann zeta function in number theory.
Weierstrass eta function [ edit ] The Weierstrass eta function is defined to be
η ( w ; Λ ) = ζ ( z + w ; Λ ) − ζ ( z ; Λ ) , for any z ∈ C {\displaystyle \eta (w;\Lambda )=\zeta (z+w;\Lambda )-\zeta (z;\Lambda ),{\mbox{ for any }}z\in \mathbb {C} } and any w in the lattice Λ {\displaystyle \Lambda } This is well-defined, i.e. ζ ( z + w ; Λ ) − ζ ( z ; Λ ) {\displaystyle \zeta (z+w;\Lambda )-\zeta (z;\Lambda )} only depends on the lattice vector w . The Weierstrass eta function should not be confused with either the Dedekind eta function or the Dirichlet eta function .
Weierstrass ℘-function[ edit ] Plot of the p-function using Domain coloring The Weierstrass p-function is related to the zeta function by
℘ ( z ; Λ ) = − ζ ′ ( z ; Λ ) , for any z ∈ C {\displaystyle \operatorname {\wp } {(z;\Lambda )}=-\operatorname {\zeta '} {(z;\Lambda )},{\mbox{ for any }}z\in \mathbb {C} } The Weierstrass ℘-function is an even elliptic function of order N=2 with a double pole at each lattice point and no other poles.
Consider the situation where one period is real, which we can scale to be ω 1 = 2 π {\displaystyle \omega _{1}=2\pi } and the other is taken to the limit of ω 2 → i ∞ {\displaystyle \omega _{2}\rightarrow i\infty } so that the functions are only singly-periodic. The corresponding invariants are { g 2 , g 3 } = { 1 12 , 1 216 } {\displaystyle \{g_{2},g_{3}\}=\left\{{\tfrac {1}{12}},{\tfrac {1}{216}}\right\}} of discriminant Δ = 0 {\displaystyle \Delta =0} . Then we have η 1 = π 12 {\displaystyle \eta _{1}={\tfrac {\pi }{12}}} and thus from the above infinite product definition the following equality:
σ ( z ; Λ ) = 2 e z 2 / 24 sin ( z 2 ) {\displaystyle \operatorname {\sigma } {(z;\Lambda )}=2e^{z^{2}/24}\sin {\left({\tfrac {z}{2}}\right)}} A generalization for other sine-like functions on other doubly-periodic lattices is
f ( z ) = π ω 1 e − ( 4 η 1 / ω 1 ) z 2 σ ( 2 z ; Λ ) {\displaystyle f(z)={\frac {\pi }{\omega _{1}}}e^{-(4\eta _{1}/\omega _{1})z^{2}}\operatorname {\sigma } {(2z;\Lambda )}} This article incorporates material from Weierstrass sigma function on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .