デッドセクション

デッドセクション(dead+section)は、電化された鉄道において、異なる電気方式や会社間の接続点に設けられる、架線に給電されていない区間・地点のことである。

死電区間(しでんくかん)、無電区間(むでんくかん)、死区間(しくかん)ともいう。

設置の類型[編集]

JR東日本常磐線のデッドセクション 取手(手前側:直流) - 藤代(奥側:交流)間
JR東日本常磐線のデッドセクション
取手(手前側:直流) - 藤代(奥側:交流)間
えちごトキめき鉄道日本海ひすいラインのデッドセクション えちご押上ひすい海岸(手前側:交流) - 梶屋敷(奥側:直流)間
えちごトキめき鉄道日本海ひすいラインのデッドセクション
えちご押上ひすい海岸(手前側:交流) - 梶屋敷(奥側:直流)間

デッドセクションが設置される類型としては、以下のものがある。

  1. 直流電化区間と交流電化区間の境に設けられるもの。(電流区分セクション)
  2. 同じ電化方式であっても、使用電圧の異なる区間の境に設けられるもの。(電圧区分セクション)
  3. 同じ電化方式・電圧の交流電化方式の区間において、交流電流の位相が異なる区間の境に設けられるもの。具体的には変電所同士の送電区間の境目となる場合が多い。(異相区分セクション)なお、直流電化区間ではデッドセクションではなくエアセクションが設けられる。
  4. 交流電化方式の区間において、使用する周波数の異なる区間の境に設けられるもの。(周波数区分セクション)
  5. 電化方式も電圧も同一の場合で、相互乗り入れを行う場合に、会社間の電源分離を行うために設けられるもの また、上下線や本線 - 車庫線で電気的に分離する場合において主に渡り線上に設けられるもの。(電源区分セクション)
  6. 異なる電化方式・電圧を用いる路線同士が、平面交差する地点に設けられるもの。(平面区分セクション)
  • 1.のような直流電化区間と交流電化区間の間に設けられるデッドセクションを交直セクション、3.・4.のような交流電化区間の間に設けられるデッドセクションを交交セクションともいう。

デッドセクションは、碍子FRPなどで造られたインシュレータ(日本の在来線で長さ8 m 程度)をトロリ線に挿入する方式、主にヨーロッパ本線上で見られる2つのエアセクション間に無加圧区間を設ける「中セクション方式」のいずれかで絶縁を行うが、以下の注意が必要である。

  • 列車が力行のまま通過するとパンタグラフがそれまでの送電区間を抜け出た瞬間に大きなアークが発生して危険であるため、その手前に「架線死区間標識」を設けておいて運転士はこれを視認し、惰行状態で通過させる必要がある。
  • パンタグラフは発条力で上昇させる構造のため、無架線状態での上昇跳ね上がりによる破損の可能性から、無加圧区間は通電はしなくとも架線かそれに代わる物を張る必要がある。
  • また、列車が走行する軌道のレールは、主電動機で使用された電力を変電所に戻す役割があるため、デッドセクション内では、レールに絶縁継目と呼ばれる、隙間を設置することでレールに絶縁区間を設けているが、これでは信号機の制御に使用されている軌道回路の電流をレールに流すことはできないので、インピーダンスボンドを絶縁区間の線路脇に設置して、軌道回路の電流だけを流す役割を持たせる場合がある。

上述類例3.の異相区分セクションは交流電化区間の随所に存在するが、前述した中セクション方式では高速下で運転士が架線死区間標識を見落としやすい上に、惰行運転が速度維持の妨げとなるためデッドセクションの数を増やすことができない。つまり、変電所の数を増やすことが困難であるため列車本数や編成長で制約を受ける欠点があるものの、TGVKTXなどの高速鉄道はこの方式の下で運転されている。

これに対して日本国有鉄道1964年(昭和39年)の東海道新幹線開業に際し、2つのエアセクション間に1 km 程度の中間セクションを設置して、それが真空開閉器を介して変電所や饋電区分所に接続されており、列車が中間セクション通過中に真空開閉器により電源を0.05 - 0.3秒程度の無電時間を介して、進行後方側から進行前方側の変電所に自動で切替える[注 1]饋電(きでん)区分切替セクション方式を開発して、惰行することなく異相区分セクションを通過できるようにした。

  • ただし、加速もしくは回生制動が作動中にセクションを通過すると無電時間の開始・終了時車両制御装置が一定時間停止後、フルパワーでリトライするために前後方向の衝動が発生する。これを避けるために切替セクションの位置を覚えておき、自主的に惰行状態で通過する運転士もいる。またN700系ではデジタルATCと連動させて、切替セクションに差し掛かる前に自動的にノッチオフ・ブレーキ解除、通過後にノッチオン・ブレーキ作動する機構を搭載する。

車上切替方式[編集]

夜間走行中の車内(左) デッドセクション通過中は非常灯のみ点灯(右) 夜間走行中の車内(左) デッドセクション通過中は非常灯のみ点灯(右)
夜間走行中の車内(左)
デッドセクション通過中は非常灯のみ点灯(右)

電車電気機関車がセクション通過直前でマスコンをノッチオフ(ノッチ戻し)することで主回路を開放し惰性で走行して、直後に運転士がスイッチまたはレバーにより手動で電気方式を切替えてからデッドセクションを通過する。その際には、交流遮断器により主回路を一旦切り離してから、交直切替器による切替を行い、切替先の電力を検知すると交流遮断器により再び主回路が閉じられる動作を自動的に行い、再び力行・制動が可能になる電源切替方式である。たとえば直流から交流に転換する場合は、交流遮断器の主回路開→交直切替器の回路切り替え(直流回路開、交流回路閉[注 2])→セクション通過→交流検知→順次自動的に交流遮断器の主回路閉となる[注 3]

  • 「切替先の送電区間までに無給電区間を走りながら回路を切替えてから、全パンタグラフが切替先の送電区間に進入後に再び通電」という誤解が広くなされているが、これは間違いである[注 4]

セクション通過時に設計年次が古い電車の場合では、一時的にヘッドライトは片側のみの点灯となり、室内の照明が消え空調が停止するとともに、蓄電池からの電源により非常灯のみが点灯する。これは回路を切り替える際に遮断器(ブレーカー)が作動し一時的に編成全体が停電状態となるためである。

  • 一方で設計年次の新しい車両では、種別・行き先表示が消えるが、補助電源で車内灯が点灯する、あるいは照明を直流電源としているため消灯しないが、空調装置などは一旦停止するため再稼動する際の音でセクション通過を判断できる。機関車から暖房電源供給している一部の客車は、空調が止まる例がある(国鉄50系客車(青函用))。

また地上側でも車両側の切替忘れ防止[注 5]の観点から、標識設置・ブリンカーライトの点滅・車両に搭載されたATSATCを使用して、運転士がスイッチまたはレバーを手動で電気方式を切替えず、すべての操作を自動で行う自動切替装置の導入などの対策を行っている。

なお、気動車もしくはディーゼル機関車蒸気機関車牽引の列車では架線から電気の供給を一切受けないため前述の動作は必要ないほか、剛体架線採用区間のデッドセクションでは、FRPを用いず剛体を平行にすることで対応する。

地上切替方式[編集]

駅構内で架線に流す電流を切替える方式。電気機関車牽引の列車が少なく、電車が主流となった日本の鉄道では採用例が少なく、常用のものは以下の例のみであったが、2018年までにすべて廃止された。

  • 仙山線作並駅:1957年9月 仙台 - 作並間交流電化開業にともない設置。1968年9月、仙山線作並 - 山形間の交流電源切替により廃止。
  • 東北本線黒磯駅:1959年7月 黒磯 - 白河間交流電化開業にともない設置。2018年1月、デッドセクションを黒磯駅構内(北寄りの高久・仙台方)に移設し廃止された[1][2][3]
  • 奥羽本線福島 - 庭坂間:1960年3月 東北本線白河 - 福島間交流電化開業にともない設置。1968年9月、奥羽本線福島 - 米沢間の交流電源切替により廃止。

なお、2006年9月24日西日本旅客鉄道(JR西日本)北陸本線長浜 - 敦賀間・湖西線永原 - 近江塩津間の直流電源切替に伴い敦賀 - 南今庄間に交直デッドセクションが新設されたが、下り線のセクションは上り勾配上に設置されたため切替中に万一セクション手前で停止したような場合に備えて、以下の非常時のみ取扱の地上切替方式という形態での設備を設置した。

  • デッドセクション手前の直流区間の架線電源を交流20kVへ切替える切替断路器
  • その際に交交セクションとして機能するデッドセクションの中間部を交流加圧し無電区間の長さを短縮するための断路器

日本の主なデッドセクション設置箇所[編集]

日本の鉄道におけるデッドセクションの設置例は次のとおりである。以下類型ごとに挙げる。

直流・交流接続[編集]

デッドセクションを挟んだ区間では、同じ路線でも使用可能な車両が異なり、ほとんどの場合は運転系統や本数など輸送そのものが分断されている。中には黒磯駅のように別路線のようになっているものもある。

特に交直流電車は高価なことに加えて単行運転ができないので、セクションを越える区間のローカル輸送は全線電化にもかかわらず、近辺の非電化路線と共通運用の気動車を運行している路線もある(羽越本線など)。

また、仙石東北ラインのように線路は接続し直通列車も運行してはいるが、一定の距離を非電化にして架線自体は接続していないケースも存在する(この場合も気動車を使用)。

直流1500 V・交流20 kV (50 Hz)[編集]

デッドセクション切替看板 羽越本線 村上 - 間島間
デッドセクション切替看板
羽越本線 村上 - 間島間
架線死区間標識
架線死区間標識
交直切換の電光表示
交直切換の電光表示
車内蛍光灯が消える水戸線の列車
方向幕灯とヘッドライト片方が消える七尾線の電車

直流1500 V・交流20 kV (60 Hz)[編集]

直流1500 V・交流25 kV (60 Hz)[編集]

  • 山陽本線 新下関駅山陽新幹線 新下関保守基地)構内
    • 軌間可変電車の山陽新幹線乗り入れおよび交直切換試験用として設置された。ただし2016年7月現在、軌間可変装置が撤去されて標準軌側と狭軌側が分断された状態になっており実質的には使用停止状態にある。

異電圧接続[編集]

主に元々が別のシステムだった路線を接続するために使用される。

直流1500 V・750 V[編集]

交流25 kV・20 kV (50 Hz)[編集]

参考[編集]

異周波数接続[編集]

日本においては、異周波数交流をデッドセクションで接続した例は存在しない。下記は、あくまでも参考として挙げたものである。上述の新幹線異相区分セクションと同様、切替セクションにより異周波数交流を接続しているため、接続点であるこれら3か所のき電区分所には無電区間は存在しない。一般的なデッドセクションとは構造の異なるものであるが、異方式電源の接続方法の類例として挙げる。

直流同電圧接続[編集]

栗橋駅構内デッドセクション

交流同周波数同電圧接続[編集]

交流電化区間における異相区分セクションは設置例が多数となるので、ここでは異社間も含め割愛する。

過去の設置例[編集]

名鉄田神線 田神 - 市ノ坪間
デッドセクション

日本国外の設置例[編集]

韓国[編集]

韓国において、デッドセクションは絶縁区間절연구간)と呼ばれる。

いずれも直流1500V⇔交流25kV・60Hzである。

この他にも交流電化区間における異相区分セクションが多数存在する。

かつては特殊なケースとして、首都圏電鉄京義・中央線(交流電化)の龍山 - 二村間にて、途中の漢江大橋直下を通過する区間の車両限界が小さい関係でデッドセクションが設けられていたが、2017年6月にセクションの移転により解消された。

香港[編集]

羅湖駅以北、深圳駅付近

交流電化の内

中華人民共和国の高速鉄道香港西九龍駅構内(乗降エリア)まで中国(香港内は地上に出ない)駅の内に国境、電力は香港から通関するか本土から延長饋電しているかは不明。

香港島の路面電車と香港軽鉄と前地鉄の各線は直流電化となっているため、デッドセクションはない。

アメリカ[編集]

スイス[編集]

直流1000V電化のベルニナ線と交流(11 kV 16.7 Hz)電化の本線系統が接続する両駅には、交直流を地上切替可能な番線がある。ただし2種の電化方式をまたいで走行する列車はごく限られている。

デッドセクションに関連したトラブル[編集]

  • 1986年11月 国鉄山陽本線(関門間)
    • 1986年11月改正で設定されたばかりの下関行き「にちりん」号が、小倉駅で直流電源への切替が出来ないことが判明してそのまま運転を打切るというトラブルが発生した。原因は同列車の先頭車として使用されたクハ481形500番台車両に交直切替スイッチが設置されていなかったためであった。同車は1984年2月のダイヤ改正時に、直流用電車である181系の先頭車クハ181-109およびクハ180-5を交流直流両用の485系に改造編入したものであるが、改造時点では九州島内配置の485系に本州乗り入れ運用が無かったため交直切替スイッチの設置を省略されており、何らかの手違いで同車の充当が不可能な運用に入ったため。その後程なく同車に交直切替スイッチの設置改造が行われている。
  • 1995年6月8日 JR東日本常磐線
    • 上り貨物列車の機関士が取手 - 藤代間で線路上を歩く人を発見して非常停車したが、停車位置がデッドセクション内であったため発車できず立ち往生した。
  • 2004年2月6日 JR西日本北陸本線
    • 糸魚川 - 梶屋敷間を走行中の札幌発大阪行き上り寝台特急「トワイライトエクスプレス」の運転士が踏切に進入する車に気付いて急停車したが、EF81形電気機関車の停車位置がデッドセクション内であったため救援のディーゼル機関車が来るまで約1時間立ち往生した。
  • 2007年1月11日 JR東日本水戸線
    • 小田林 - 小山間を走行中の友部発小山行電車の運転士が異常音を感じたことから急停車させたが、約45mのデッドセクション内に停車したため立ち往生した。後続の普通列車によって救援された。
  • 2010年1月14日 JR東日本常磐線
    • 試運転中のEF510-501が取手 - 藤代間のデッドセクション通過中に故障し立ち往生。後続の貨物列車に救援された。
  • 2014年2月4日 JR西日本七尾線
    • 金沢発七尾行き普通電車が車両故障のために停車したが、デッドセクション内に停車したため自力走行できず暖房も効かない気温0°Cの中で2時間30分立ち往生した。
  • 2017年6月2日 JR東日本東北本線
    • 黒磯駅5番線で当駅発福島行E721系電車の床下機器から発煙が生じる事故が発生した。原因は駅係員が6番線の貨物列車と誤り5番線の交流普通列車の架線に直流を流し機器がショートしたため。

デッドセクションに関連する作品[編集]

  • 西村京太郎 『特急しらさぎ殺人事件』 - デッドセクションを走行中、車内が真っ暗になっている間に殺人が起きる。小説版では『L特急踊り子号殺人事件』に収録。秋田書店から発売されたコンビニコミック『十津川警部の事件簿』にも収録されている。
  • 皆川亮二の漫画『D-LIVE!!』- テロリストに乗っ取られた「スーパーひたち」をデッドセクション内でパンタグラフを離す事で止める。
  • 矢野顕子の曲「Night Train Home」(『ホントのきもち』収録)- 黒磯駅におけるデッドセクションが歌詞に登場する。
  • 日本エレキテル連合の単独公演「死電区間」(DVD、販売元:アニプレックス) - 本公演がきっかけで、2015年夏季には鉄道博物館の企画展「みんなのでんしゃ展~今度の電車はてっぱく行きです~」の“1日盛り上げ係”に任命された[7]
  • 電車でGO!(電車運転シミュレーションゲーム) - デッドセクション内を惰性走行で通過するとボーナスが加算される。停車すると減点される(一部作品では再発車できなくなり、プレイ続行が不可能となる)。気動車は上記操作を行っても加点や減点はない。

脚注[編集]

注釈[編集]

  1. ^ 切替は軌道回路からの列車条件を元に連動して切替える。
  2. ^ DC>AC。まだ直流区間であるが、電源検知回路により交流用回路は開であり、交流遮断器による主回路開後に回路の切り替え操作をとった上であれば、交流遮断器による主回路閉操作をしても問題は生じない。主回路閉のままの操作では切り替えが完了する前に異種電源(直流電源)に接続されるため許容されない。
  3. ^ 日本のほか、韓国でもこの方法で切り替える(日本のシステムを韓国に持ち込んだもの。韓国鉄道1000系電車を参照。485系とほぼ同じ)。欧州では走行中にパンタグラフを下げて回路を切換、その後パンタを上げる方法で切り替える(youtubeに当該動画がある)。黒磯駅でのJR貨物EH500形電気機関車の切替も同様であった。
  4. ^ 仮に485系9両編成を例にすれば、編成間両端モハ484形同士で100m以上離れている上に、100km/h=1.67km/min=28m/s程度で走行している場合確実に編成がセクションに入った事を確認して、さらに操作を完遂するために必要な時間と余裕を考慮すればデッドセクションが数km必要になる。
  5. ^ 異種電源接続は機器を損傷する可能性があり危険である。安全装置が正常に動作すれば機器の大きな損傷は避けられ、直流→交流の冒進では遮断器が作動するだけなので機器を操作すれば運転継続が可能であり比較的影響は少ないが、交流→直流への冒進事故は、交流側回路を保護するため取付けられたヒューズの交換が必要となりそれまで交流区間では運転ができなくなるなどリスクが大きい。直流→交流の冒進では無電区間走行(約0.5秒)の検知により遮断器を動作させられるが、交流→直流では交流電化区間に交交セクションが存在することにより「無電区間突入=交直セクション突入」を前提とした機構を構成することが不可能でありヒューズ以外の十分に確実性のある防護措置が確保できないからである。
  6. ^ 黒磯駅構内扱い[2][3]
  7. ^ 以前「あさぎり」運用に投入されていた小田急20000形電車は室内灯消灯。JR東海371系電車では車内表示機消灯・室内灯点灯の差異があった。

出典[編集]

関連項目[編集]

外部リンク[編集]