弾性率(だんせいりつ、英語: elastic modulus)は、変形のしにくさを表す物性値であり、弾性変形における応力とひずみの間の比例定数の総称である。弾性係数あるいは弾性定数とも呼ばれる[1]。
一般に、加えられた外力(応力)を分子、応力によって引き起こされたひずみを分母とした商で定義される[2]。
- 弾性率 := 応力 / ひずみ
ひずみは無次元量であるので、弾性率は応力と同じ次元を持ち、SIにおける単位はパスカル(記号: Pa)、ニュートン毎平方メートル(記号: N/m2)が用いられる。また、弾性率の逆数を弾性コンプライアンス定数や単に弾性コンプライアンスという。単位は1/Pa、m2/N。
1807年にトマス・ヤングによって導入された[3]。
単純な伸長変形のモデル。L0 は元長、L は変形後長さ、ε は伸長ひずみ、f は力、A0 は変形前における力と垂直な断面積、σ は応力、E は伸長弾性率、ηE は伸長粘度、
は伸長ひずみの時間微分である。
単純な剪断変形のモデル。d は変位、h は力と垂直な厚さ、α は倒れ角、γ は剪断ひずみ、f は力、A0 は変形前における力と平行な断面積、σ は応力、G は剪断弾性率、η は剪断粘度、
は剪断ひずみの時間微分である。
単純な体積変形のモデル。V0 は元体積、V は変形後体積、κ は体積ひずみ、f は力、A0 は変形前における表面積、σ は応力、K は体積弾性率、ηV は体積粘度、
は体積ひずみの時間微分である。 弾性変形は伸長(または圧縮)変形、剪断変形、体積変形の3つの種類に分けられ、従って弾性率も3種類ある。それぞれひずみの定義は異なる。
- 引張弾性率

- 引張力や圧縮力などの単軸応力についての弾性率。ヤング率(縦弾性係数)。

- 伸長ひずみ
(L0 は元々の長さ、L は引張後長さ) - 伸長粘度
(t は時間)
- 剪断弾性率

- 剪断力についての弾性率。剛性率(ずり弾性率・横弾性係数・剪断弾性係数・ラメの第二定数)。

- 剪断ひずみ
(d は剪断により面が剪断力方向に移動した距離、h は剪断力方向と垂直な試料厚さ、α は試料の面が長方形から平行四辺形になるときの倒れ角) - 剪断粘度

- 体積弾性率

- 静水圧(直角3方向の力)についての弾性率。

- 体積ひずみ
(V0 は元々の体積、V は変形後の体積) - 体積粘度

一般に、等方性均質材料(無定形ポリマー、非晶性・無配向ポリマーなど)では3種の弾性率(引張弾性率 E、剪断弾性率 G、体積弾性率 K)の関係について次式が成り立つ[2]。

ここで ν は縦方向のひずみと横方向のひずみとの比(ポアソン比)である。
このように等方性材料のヤング率 E 、ポアソン比 ν、体積弾性率 K 、剛性率 G 、ラメの第一定数 λ の5つの弾性率はそれぞれ、2つを用いて残りの3つを表すことができる。その関係を下表に示す。ここで、

とする。
結晶性ポリマー、繊維、フィルム、繊維充填複合材料、一般の射出成形物などは等方性材料ではない(異方性材料)。高分子鎖、充填繊維、結晶相などに配向を持ち、その程度は内部と表面で異なる。これら異方性材料は、独立した2つ以上の弾性率を持つ[4]。
等方均質弾性体における各弾性率間の変換式 |
| (ヤング率) | (ポアソン比) | (体積弾性率) | (剛性率) | (ラメの第一定数) |
|  |  |  |  | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
2階のテンソル量である応力 σ とひずみ ε に対して、弾性率 D は4階のテンソル量で表すことができる[5]。

[6]
弾性率はテンソルであるため、物質客観性の原理により座標変換において同じ σ = Dε の関係を保たねばならない。座標系 O-x1x2x3 から O-x '1x '2x '3 へ変換するとき、弾性率テンソルの成分は

と変換される[7]。ここで lip は xi 軸と x'p 軸の方向余弦である。
弾性率テンソルは81(= 34)個の成分を持つが、応力テンソル σ とひずみテンソル ε は対称性、すなわち
によりそれぞれ独立な6成分を持つので、弾性率テンソル D も

の性質を持ち、独立な成分は36(= 62)個となる。さらに単位体積あたりの弾性ひずみエネルギー
を用いて弾性率が

と表せることから

が成り立つため、最終的に弾性率テンソル D の独立な成分は21(= 6×(6+1)/2)個となる[7]。
以上は異方性材料でも成り立つことだが、さらに材料が等方性均質材料の場合、弾性率テンソル D の独立な成分は2個まで絞られ[5]、次式のように書ける[8]。これは等方テンソルを対称化したものである。

ここで δ はクロネッカーのデルタである。
粘弾性体に対しては、弾性率は複素数で表される。複素弾性率の実部は貯蔵弾性率、虚部は損失弾性率と呼ばれる。