Hipérbole – Wikipédia, a enciclopédia livre

 Nota: Se procura a figura de linguagem, veja Hipérbole (figura de estilo).
Hipérbole como seção cônica.

Em matemática, uma hipérbole é um tipo de seção cônica definida como a interseção entre uma superfície cônica circular regular e um plano que passa através das duas metades do cone, sem que este plano seja paralelo à linha oposta ao corte.[1]

Hipérbole pode indicar toda a seção do corte, ou também apenas uma das duas curvas que a formam. As duas curvas são iguais, e são denominadas hipérboles opostas.[1]

Ela também pode ser definida como o conjunto de todos os pontos coplanares[2] para os quais a diferença das distâncias a dois pontos fixos (chamados de focos) é constante.

Para uma prova geométrica simples de que as duas caracterizações acima são equivalentes, veja esferas de Dandelin.

Algebricamente, uma hipérbole é uma curva no plano cartesiano definida por uma equação da forma

tal que onde todos os coeficientes são reais, e onde mais de uma solução, definindo um par de pontos (x,y) na hipérbole, existe.

Definições[editar | editar código-fonte]

Os vértices da hipérbole são os dois pontos, um de cada hipérbole oposta, mais próximos entre si. A reta que liga estes dois pontos se chama o eixo transverso da hipérbole. O centro da hipérbole é o ponto médio do segmento de reta que une os dois vértices.[1]

A hipérbole também pode ser definida como o locus de pontos para os quais a razão das distâncias a um foco e a uma reta (chamada de diretriz) é uma constante maior ou igual a 1. Esta constante é considerada a excentricidade de hipérbole. Estes focos se encontram no eixo transversal e seu ponto médio é chamado de centro.

Uma hipérbole compreende duas curvas desconectadas, chamadas de "braços", que separam os focos. Conforme a distância dos pontos da hipérbole aos focos aumenta, a hipérbole começa a se aproximar de duas linhas, conhecidas como assíntotas.

Uma hipérbole possui a propriedade de que um raio, originando-se em um de seus focos, é refletido de tal forma que ele aparenta ter sido originado no outro foco.

Uma hipérbole ambigenal é uma das hipérboles triplas de segunda ordem, possuindo uma de suas quatro curvas infinitas aproximando-se com um ângulo com relação às assíntotas, e com a curva oposta se aproximando sem este ângulo.[3]

Hipérboles retangulares de unidade conjugadas

Um caso especial da hipérbole é a equilateral ou hipérbole retangular, na qual as assíntotas se intersectam em ângulos retos. A hipérbole retangular, com suas assíntotas coincidentes com os eixos coordenados, é dada pela equação xy=c, onde c é uma constante.

Assim como as funções seno e co-seno geram uma equação paramétrica para a elipse, as funções seno hiperbólico e co-seno hiperbólico também geram uma equação paramétrica para a hipérbole.

Se na equação da hipérbole invertermos as variáveis x e y, obteremos a hipérbole conjugada. Uma hipérbole e sua hipérbole conjugada possuem as mesmas assíntotas.

Equações[editar | editar código-fonte]

Cartesiana[editar | editar código-fonte]

Hipérbole de abertura leste-oeste:

Hipérbole de abertura norte-sul:

Em ambas as fórmulas (h,k) é o centro da hipérbole, a é o semieixo real (metade da distância entre os dois ramos), e b é o semieixo imaginário. Note que b pode ser maior que a.

A excentricidade é dada por

ou

Para hipérboles retângulares com os eixo de coordenadas paralelos às suas assíntotas temos:

Polar[editar | editar código-fonte]

Hipérbole com abertura leste-oeste:

Hipérbole com abertura norte-sul:

Hipérbole com abertura nordeste-sudoeste:

Em todas as fórmulas o centro está no pólo, e a é o semi-eixo maior e menor.

Paramétrica[editar | editar código-fonte]

Hipérbole com abertura leste-oeste:

Hipérbole com abertura norte-sul:

Em ambas as fórmulas (h,k) é o centro da hipérbole, a é o semi-eixo maior, e b é o semi-eixo menor.

Outra maneira é através das funções hiperbólica senh e cosh.

Hipérbole com abertura leste-oeste:

Hipérbole com abertura norte-sul:

A diferença dessas duas maneiras é que a primeira é muito mais rápida (uma pequena variação do ângulo, produz uma grande variação nas coordenadas). Também, a primeira não está definida para e . O que conecta as duas maneiras de parametrizar são as equações abaixo:

Em que gd é a função gudermanniana.

Aplicações[editar | editar código-fonte]

Um exemplo de aplicação da hipérbole é no sistema de navegação LORAN. Em um determinado caso, por exemplo, há pares de estações emitindo sinais, e a diferença de tempo na recepção de ambos pode ser utilizada para determinar a posição de um navio [4]

Trissecção de um ângulo[editar | editar código-fonte]

Trissectando um ângulo (AOB) usando uma hipérbole de excentricidade 2 (curva amarela).

Um problema clássico na geometria de construções com régua e compasso é o da trissecção de um ângulo. Procura-se achar um método para que, dado um ângulo qualquer e usando apenas um compasso e uma régua sem graduação, encontre-se um ângulo cuja medida seja .

Apolônio de Perga, o autor da obra clássica As Cônicas, mostrou que uma seção cônica poderia ser usada para trissectar um ângulo arbitrário.[5] O conjunto de pontos determinados pela cônica utilizada, no entanto, não pode ser determinado via construções com régua e compasso. A impossibilidade da resolução do problema da trissecção de um ângulo usando compasso e régua foi provada por Pierre Wantzel em 1837. [6]

Papo de Alexandria, por volta de 300 DC, usou a descoberta de Apolônio para trissectar um ângulo usando uma hipérbole, usando o método descrito a seguir.[7] Dado um ângulo qualquer, desenha-se uma circunferência centrada no seu vértice O. Essa circunferência irá se intersectar com os dois lados do ângulo em pontos que chamaremos de A e B. Em seguida, desenha-se um segmento de reta entre A e B e uma reta l perpendicular ao segmento AB, passando por O. Constrói-se então uma hipérbole de excentricidade 2, tendo a reta r como diretriz e B como foco. Assim, dentre os pontos de interseção entre a hipérbole construída e a circunferência de centro O, escolhemos o mais distante de O e o chamamos de P. O ângulo POB terá medida de um terço do ângulo BOC. [8]

Referências

  1. a b c Charles Hutton, A Philosophical and Mathematical Dictionary Containing... Memoirs of the Lives and Writings of the Most Eminent Authors, Volume 1 (1815), Hyperbola, p.667 [google books]
  2. Carvalho, Benjamin - Desenho Geométrico. Ed. Ao Livro Técnico, São Paulo: 1988.
  3. 1828 Webster's Dictionary, domínio público.
  4. FutureLearn - Hyperbolas for navigation and military use (em inglês)
  5. «Mathematics - Apollonius». Encyclopedia Britannica (em inglês). Consultado em 20 de agosto de 2020 
  6. Smorynski, Craig (10 de dezembro de 2007). History of Mathematics: A Supplement (em inglês). [S.l.]: Springer Science & Business Media 
  7. «Pappus of Alexandria». 1911 Encyclopædia Britannica. Volume 20 
  8. MOLBERT, NICHOLAS (Julho de 2012). «SECTIONING ANGLES USING HYPERBOLIC CURVES» (PDF) 

Bibliografia[editar | editar código-fonte]

  • Braga, Theodoro - Desenho linear geométrico. Ed. Cone, São Paulo: 1997.
  • Carvalho, Benjamim - Desenho Geométrico. Ed. Ao Livro Técnico, São Paulo: 1982.
  • Giongo, Affonso Rocha - Curso de Desenho Geométrico. Ed. Nobel, São Paulo: 1954.
  • Mandarino, Denis - Desenho Geométrico, construções com régua e compasso. Ed. Plêiade, São Paulo: 2007.
  • Marmo, Carlos - Desenho Geométrico. Ed. Scipione, São Paulo: 1995.
  • Putnoki, José Carlos - Elementos de geometria e desenho geométrico. Vol. 1 e 2. Ed. Scipione, São Paulo: 1990.

Ver também[editar | editar código-fonte]

Ligações externas[editar | editar código-fonte]