Дифференциальная геометрия поверхностей — Википедия

Дифференциальная геометрия поверхностей — исторически важная область дифференциальной геометрии.

Дифференциальная геометрия поверхностей разделяется на два основных подраздела: внешней и внутренней геометрии. Основным объектом изучения внешней геометрии поверхностей являются гладкие поверхности, вложенные в евклидово пространство, а также ряд их обобщений. Во внутренней геометрии основным объектом являются абстрактно заданные поверхности с различными дополнительными структурами, наиболее часто — первая фундаментальная форма (то же, что и риманова метрика).

История[править | править код]

Отдельные свойства поверхностей вращения были известны ещё Архимеду. Развитие математического анализа в семнадцатом веке обеспечило более систематические подходы к их доказательству.

Кривизну поверхностей общего вида изучал Леонард Эйлер; в 1760 году им получено выражение для нормальных кривизн поверхности.[1] В 1771 году[2] он рассматривал поверхности, заданные в параметрической форме, ввёл по­ня­тие на­ло­жи­мо­сти по­верх­но­стей (в современной терминологии — изометричность); в частности он рассмотрел по­верх­но­сти, на­ло­жи­мые на плос­кость. Таким образом Эйлер был первым, кто рассматривал внутреннюю геометрию поверхности.

Гаспар Монж рассматривал асимптотические кривые и линии кривизны на поверхностях.

Важнейший вклад в теорию поверхностей сделал Гаусс в двух статьях, написанных в 1825 и 1827 годах[3]. В частности, им доказана так называемая Theorema Egregium — исторически важный результат, который говорит, что кривизна Гаусса является внутренним инвариантом, то есть инвариантом относительно локальных изометрий. Выделение дифференциальной геометрии в отдельную область исследований часто связывают именно с этой теоремой.[4] Он ввёл понятие первой и второй квадратичных форм. Позже Карл Михайлович Пе­тер­со­н вывел пол­ную сис­те­му урав­не­ний на квадратичные формы поверхности.

Ключевые результаты во внутренней геометрии поверхностей были получены Фердинандом Готлибовичем Миндингом. В частности, он ввёл понятие параллельного перенесения вдоль кривой, получившее дальнейшее развитие в работах Туллио Леви-Чивиты.

С конца XIX векa, большое внимание уделялось задаче об изометрическом погружении, изгибании поверхностей и задачам жёсткости. Важнейшие результаты были получены Александром Даниловичем Александровым, Давидом Гилбертом, Дмитрием Фёдоровичем Егоровым, Стефаном Кон-Фоссеном и другими.

Методы развитые в дифференциальной геометрии поверхностей сыграли основную роль в развитии римановой и александровской геометрий.

Основные понятия[править | править код]

Гладкая вложенная поверхность является основным объектом изучения дифференциальной геометрии поверхностей, точнее внешней геометрии поверхностей. Она определяется следующим образом: Подмножество евклидова пространства называется гладкой вложенной поверхностью (точнее гладкой регулярной вложенной поверхностью без края), если для любой точки существует окрестность в , которая является графиком гладкой функции в подходящим образом выбранной системе декартовых координат .

Для любой поверхности, вложенной в евклидово пространство, можно измерить длину кривой на поверхности, угол между двумя кривыми и площадь области на поверхности. Эта структура задаётся первой фундаментальной формой, то есть 2×2 положительно определённой матрицей, гладко меняющаяся от точки к точке в локальной параметризации поверхности. Можно абстрагироваться от исходного вложения. То есть рассматривать абстрактную поверхность заданную локальными координатами с римановой метрикой. Это приводит к так называемой внутренней геометрии поверхностей, получившей дальнейшее развитие в римановой геометрии.

Центральную роль в исследовании поверхностей играет кривизна, в том числе главные кривизны, гауссова и средняя кривизны, а также тензорные описания кривизны, такие как оператор формы и вторая фундаментальная форма.

Большое внимание отводится и другим классам кривых на поверхности, включая геодезические, асимптотические кривые и линии кривизны.

Основные результаты теории относятся к свойствам выпуклых, седловых поверхностей, поверхностей вращения, поверхностей постоянной средней кривизны и в частности минимальных поверхностей.

Конструкции
  • Сферическое отображение — отображение при котором точка поверхности отображается в вектор единичной нормали в этой точке.
Технические утверждения
  • Теорема Мёнье — даёт выражение для кривизны кривой, лежащей на поверхности.

Фундаментальные теоремы[править | править код]

  • Лемма Гаусса о геодезических — утверждает, что любая достаточно малая окружность с центром в точке поверхности перпендикулярна каждой геодезической кривой из центра. Используется в доказательстве того, что геодезические кривые являются локально кратчайшими кривыми. Также играет ключевую роль в доказательстве свойств нормальных и полугеодезических координат
  • Теорема об униформизации — гарантирует существование конформной параметризации данной поверхности поверхностью постоянной гауссовой кривизны.

Открытые вопросы[править | править код]

  • Задача изометричного вложения. Остаётся открытым вопрос, любая ли абстрактно заданная поверхность допускает изометрическое вложение в евклидово пространство размерности 3. Это так называемая «уравнение Вейля»[5].
    • Результат Якобовича[6] и Позняка[7] даёт положительный ответ для вложений в 4-х мерное пространство.
    • В 1926 году Морис Жане доказал, решил задачу для аналитических метрик.
    • Теорема Александрова о вложении говорит, что любая достаточно гладкая метрика на сфере с положительной гауссовой кривизной изометрична замкнутой выпуклой поверхности в . Аналогичный результат для аналитических метрик был получен ранее Вейлем.[8]
  • Гипотеза Каратеодори: Гипотеза утверждает, что замкнутая выпуклая трижды дифференцируемая поверхность допускает по меньшей мере две точки округления. Первой работой по этой гипотезе была работа Ганса Гамбургера в 1924, который заметил, что гипотеза следует из следующего более строгого утверждения: Полуцелый индекс расслоения главной кривизны изолированной омбилики не превосходит единицы.
  • Гипотеза Вилмора[en]. Эта гипотеза утверждает, что интеграл от квадрата средней кривизны тора, вложенного в , должен быть ограничен снизу величиной . Известно, что интеграл является инвариантом Мёбиуса. Гипотезу решили в 2012 Фернандо Кода Маркес и Андрк Невес[9].

Примечания[править | править код]

  1. Euler, 1760.
  2. Euler, 1771.
  3. Gauss, 1902.
  4. Топоногов, 2012, с. 132.
  5. Han, Hong, 2006.
  6. Jacobowitz, 1972.
  7. Poznjak, 1973.
  8. Погорелов А. В. Изгибание выпуклых поверхностей ГИТТЛ (1951)
  9. Marques, Neves, 2014, с. 683–782.

Ссылки[править | править код]

Литература[править | править код]

  • С. Э. Кон-Фоссен, Д. Гильберт. Наглядная геометрия. — М.: Объединенное научно-техническое издательство НКТП СССР, 1936. — 302 с.
  • Qing Han, Jia-Xing Hong. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces. — 2006. — ISBN 978-0-8218-4071-9.