Радиационная химия — Википедия

Радиационная химия — часть химии высоких энергий, раздел физической химии — изучает химические процессы, вызываемые воздействием ионизирующих излучений на вещество.

Ионизирующей способностью обладают электромагнитные излучения (рентгеновское излучение, γ-излучение, синхротронное излучение) и потоки ускоренных частиц (электронов, протонов, нейтронов, гелионов, тяжёлых ионов; осколки деления тяжёлых ядер и др.), энергия которых превышает потенциал ионизации атомов или молекул (в большинстве случаев, лежащий в пределах 10-15 эВ).

В рамках радиационной химии рассматриваются некоторые химические процессы, невозможные при использовании традиционных химических подходов. Ионизирующие излучения могут сильно снижать температуру протекания химических реакций без применения катализаторов и инициаторов.

История радиационной химии[править | править код]

Радиационная химия возникла после открытия x-лучей В. Рентгеном в 1895 году и радиоактивности А. Беккерелем в 1896 году, которые первыми наблюдали радиационные эффекты в фотопластинках. Первые работы по радиационной химии были выполнены в 1899—1903 годах супругами М.Кюри и П. Кюри. В последующие годы наибольшее число исследований было посвящено радиолизу воды и водных растворов.

Физические основы радиационной химии[править | править код]

Было установлено, что, проходя через вещество, g-квант или быстрые частицы (a-частицы, электроны, протоны и др.) выбивают электроны из молекул, то есть вызывают их ионизацию или возбуждение, если порция передаваемой им энергии меньше энергии ионизации. В результате на пути быстрой частицы возникает большое количество электрически заряженных — ионы, ионы-радикалы — или нейтральных — атомы, радикалы (см. Радикалы свободные) осколков молекул, образующих так называемый трек. Выбитые из молекул электроны, обладающие меньшей энергией («вторичные» электроны), разлетаясь в стороны, в свою очередь, производят аналогичное действие, только на более коротком расстоянии (соответствующем их энергии). В результате трек первичной быстрой частицы разветвляется вследствие образования более коротких областей ионизации и возбуждения. При достаточной плотности облучения треки перекрываются и первоначальная неоднородность в пространственном распределении активированных и осколочных частиц нивелируется. Этому способствует также диффузия частиц из треков в незатронутую излучением среду.

  Процессы, происходящие в облучаемой среде, можно разделить на три основные стадии. В первичной, физической стадии происходят столкновения быстрой заряженной частицы с молекулами среды, в результате которых кинетическая энергия частицы передаётся молекулам, что приводит к изменению их энергетического состояния. На этой стадии энергия, передаваемая среде, рассредоточивается по различным молекулярным (атомным) уровням. В результате возникает большое число «активированных» молекул, находящихся в различных состояниях возбуждения. Первичная стадия проходит в очень короткие отрезки времени: 10-15—10-12 сек. В созданном возбуждённом состоянии молекулы нестабильны, и происходит либо их распад, либо они вступают во взаимодействие с окружающими молекулами. В результате образуются ионы, атомы и радикалы, то есть промежуточные частицы радиационно-химических реакций. Эта, вторая, стадия продолжается 10-13—10-11 сек. На третьей стадии (собственно химической) образовавшиеся активные частицы взаимодействуют с окружающими молекулами или друг с другом. На этой стадии образуются конечные продукты радиационно-химической реакции. Длительность третьей стадии зависит от активности промежуточных частиц и свойств среды и может составлять 10-11—10-6 сек.

 «Вторичные» электроны, затрачивая свою кинетическую энергию на ионизацию (возбуждение) молекул, постепенно замедляются до скорости, соответствующей тепловой энергии. В жидкой среде такое их замедление происходит в течение 10-13—10-12 сек, после чего они захватываются либо одной молекулой, образуя отрицательно заряженный ион, либо группой молекул («сольватируются»). Такие «сольватированные» электроны «живут» в течение 10-8—10-5 сек (в зависимости от свойств среды и условий), после чего рекомбинируют с какими-либо положительно заряженными частицами. Совокупность закономерностей перечисленных элементарных процессов является важной составной частью теории Р. х. Кроме того, реакциям возбужденных молекул принадлежит значительная роль в радиационно-химических процессах. Большое значение для протекания последних имеет также передача энергии возбуждения в облучаемой среде, приводящая к дезактивации возбуждённых молекул и рассеянию энергии. Такие процессы изучает фотохимия, которая тем самым тесно связана с Радиационной химией.

Радиационно-химические превращения[править | править код]

Под действием ионизирующего излучения происходят следующие радиационно-химические превращения[1]:

См. также[править | править код]

Примечания[править | править код]

  1. Радиационная химия // Энциклопедический словарь юного химика. 2-е изд. / Сост. В. А. Крицман, В. В. Станцо. — М.: Педагогика, 1990. — С. 200. — ISBN 5-7155-0292-6.
  2. Curie P., Curie M. Effets chimiques produits par les rayons de Becquerel (фр.) // Comptes rendus de l'Académie des Sciences  (англ.) : magazine. — 1899. — Vol. 129. — P. 823—825. Архивировано 16 февраля 2016 года.

Литература[править | править код]

  • Пикаев А. К. Современная радиационная химия: Основные положения: Экспериментальная техника и методы. М.: Наука, 1985. 375 с.
  • Пикаев А. К. Современная радиационная химия: Радиолиз газов и жидкостей. М.: Наука, 1986. 360 с.
  • Пикаев А. К. Современная радиационная химия: Твердое тело и полимеры: Прикладные аспекты. М.: Наука, 1987. 448 с.

Ссылки[править | править код]