BioBrick — Википедия

Стандартные визуальные символы для языка Synthetic Biology Open Language (SBOL) используемого в стандарте BioBricks

BioBrick (БиоБлок) — последовательности ДНК, предназначенные для сборки рестриктазно-лигазным методом, которые используются для разработки и создания искусственных биологических систем с определенными свойствами[1][2]. C 2008 года признается ведущим стандартом синтетической биологии[2]. После разработки на компьютере, код, как правило, внедряют в живые клетки, например Escherichia coli, чтобы придать им новые функции.

Снизу вверх: часть, устройство, система

Иерархия стандарта[править | править код]

Стандарт имеет трехуровневую иерархическую систему, на которой основана cинтетическая биология:

  1. Части: последовательность ДНК, которая формирует функциональную единицу (например промоторы, сайты связывания рибосом, кодирующие последовательности, терминаторные последовательности и пр.)
  2. Устройства: набор соединённых воедино взаимодополняющих частей, обладающий заданной функцией;
  3. Системы: набор устройств, выполняющих высокоуровневые задачи;

Преимущества стандарта[править | править код]

Стандарт разработан в MIT с целью применения инженерных принципов абстракции и модульности в области программирования биологических систем и живых организмов. Преимущества стандартизированного подхода Biobrick:

  • высокая скорость сборки последовательностей;
  • надежность высокоуровневых систем увеличивается за счет возможности независимо тестировать и классифицировать отдельные, более низкоуровневые, части и устройства;
  • потенциал большего охвата участников (ученых и специалистов) по сравнению с классическими подходами;

История BioBrick[править | править код]

2003[править | править код]

Стандарт BioBrick был описан и представлен Томом Найтом в MIT. С этого момента различные исследовательские группы начали использовать BioBrick для создания новых биологических устройств и систем.

2006[править | править код]

В 2006 году инженерами и учеными была основана некоммерческая организация BioBricks Foundation с целью стандартизировать биологические части в данной области науки.[3]

2008[править | править код]

С начала проекта уже более 2000 элементов BioBrick были выложены в открытый доступ и доступны в Реестре Стандартных биологических частей. BioBrick признается ведущим стандартом синтетической биологии[2]

2015[править | править код]

В соревнованиях iGEM 2015 приняло участие 5018 участников (280 команд) из 38 стран [1]

2017[править | править код]

В соревнованиях iGEM 2017 приняло участие 5400 участников (310 команд).

2018[править | править код]

В Каталоге частей BioBrick было уже более 20000 задокументированных генетических частей. Данные части доступны для свободного использования командам iGEM и академическим лабораториям [2].

Альтернативные стандарты[править | править код]

Первая попытка создать список стандартизированных биологических частей NOMAD была предпринята в 1996 году группой учёных под руководством Д. Ребатчука. Его команда представили стратегию клонирования для сборки коротких фрагментов ДНК. Но эта ранняя попытка не получила широкого распространения.[4]

Смотреть также[править | править код]

Примечания[править | править код]

  1. Tom Knight (2003). Idempotent Vector Design for Standard Assembly of Biobricks. Дата обращения: 26 сентября 2014. Архивировано 6 октября 2014 года.
  2. 1 2 3 Knight, Thomas F; Reshma P Shetty; Drew Endy. Engineering BioBrick vectors from BioBrick parts (неопр.) // Journal of Biological Engineering. — 2008. — 14 April (т. 2, № 5). — С. 1—12. — doi:10.1186/1754-1611-2-5. — PMID 18410688. — PMC 2373286. Архивировано 28 сентября 2015 года.
  3. BioBricks Foundation. BioBricks Foundation. Дата обращения: 19 марта 2018. Архивировано 12 марта 2018 года.
  4. Rebatchouk, Dmitri; Daraselia, N.; Narita, J. O. NOMAD: a versatile strategy for in vitro DNA manipulation applied to promoter analysis and vector design. (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1996. — 1 October (vol. 93, no. 20). — P. 10891—10896. — doi:10.1073/pnas.93.20.10891. Архивировано 24 сентября 2015 года.