Low Level Virtual Machine — Вікіпедія

LLVM
Логотип LLVM
Тип Компілятори, оптимізатори і генератори коду
Розробники LLVM Developer Group
Перший випуск 24 жовтня 2003[2]
Стабільний випуск 17.0.6 (28 листопада 2023)
Операційна система кросплатформність
Мова програмування C++
Ліцензія University of Illinois Open Source License[3]
Репозиторій github.com/llvm/llvm-project
Вебсайт llvm.org

Low Level Virtual Machine (LLVM) — універсальна система аналізу, трансформації і оптимізації програм, що реалізує віртуальну машину з RISC-подібними інструкціями. Може використовуватися як оптимізувальний компілятор цього байт-коду в машинний код для різних архітектур або для його інтерпретації та JIT-компіляції (для деяких платформ).

LLVM дозволяє компілювати програми, написані мовами С, C++, ObjC, Fortran, Ada, Haskell, Java, Python, Ruby, Rust, JavaScript, GLSL, або будь-якою іншою, для якої реалізовано front-end. В рамках проєкту розроблено фронтенд Clang для мов C і C++ і версія GCC, що використовують LLVM як бекенд. У Glasgow Haskell Compiler також реалізована компіляція за допомогою LLVM, існує ще безліч програм, що використовують цю інфраструктуру.

Історія[ред. | ред. код]

LLVM — не просто черговий академічний проєкт. Його історія почалась у 2000 році в Університеті Іллінойса, а тепер LLVM використовують такі гіганти індустрії як Apple, Adobe та Google. Зокрема, на LLVM заснована підсистема OpenGL у MacOS X 10.5, a iPhone SDK використовує GCC з бекендом на LLVM. Apple та Google є одними із основних спонсорів проєкту, а натхненник LLVM — Кріс Латтнер — тепер працює в Apple.

Особливості[ред. | ред. код]

У основі LLVM лежить проміжне подання коду (intermediate representation, IR), над яким можна виконувати трансформації у всі компіляції, компонування і виконання. Із нього генерується оптимізований машинний код для низки платформ, як статично, так і динамічно (JIT-компіляція). LLVM підтримує генерацію коду для x86, x86-64, ARM, PowerPC, SPARC, MIPS, IA-64, Alpha.

LLVM написана на C++ і портована на більшість unix-систем і Windows. Система має модульну структуру і може розширюватись додатковими алгоритмами трансформації (compiler passes) і кодогенераторами для нових апаратних платформ. Фронтенд користувача, як правило, лінкується із LLVM і використовує C++ API для генерації коду і його перетворень. Однак LLVM містить у собі й standalone утиліти.

У LLVM включена обгортка API для OCaml.

Платформи[ред. | ред. код]

LLVM підтримує роботу на наступних платформах:

Операційна система Архітектура Компілятор
FreeBSD x86 GCC, Clang
FreeBSD AMD64 GCC, Clang
Linux AMD64 GCC, Clang
Linux x86 GCC, Clang
Mac OS X PowerPC GCC
Mac OS X x86 GCC, Clang
Solaris UltraSPARC GCC
Cygwin/Win32 x86 GCC 3.4.X, Binutils 2.15
MinGW/Win32 x86 GCC 3.4.X, Binutils 2.15

LLVM має часткову підтримку таких платформ:

Операційна система Архітектура Компілятор
Windows x86 Visual Studio .NET
AIX PowerPC GCC
Linux PowerPC GCC
Linux Alpha GCC
Linux Itanium (IA-64) GCC
HP-UX Itanium (IA-64) HP aCC

Типи даних[ред. | ред. код]

Прості типи[ред. | ред. код]

Цілі числа довільної розрядності iрозрядність
  • i1 — булеве значення — 0 або 1
  • i32 — 32-розрядне ціле
  • i17
  • i256
  • Генерація машинного коду для типів дуже великої розрядності не підтримується. Наприклад, для x86 вам доведеться обмежитись i64, а для x86-64 та інших 64-розрядних платформ — 128-бітними цілими. Але для проміжного представлення ніяких обмежень нема.
  • Числа вважаються представленими у додатковому коді. На рівні типів різниці між знаковими і беззнаковими цілими не існує: у тих випадках, коли це має значення, з ними працюють різні інструкції.
Числа з рухомою комою float, double, типи, специфічні для конкретної платформи (наприклад, x86_fp80)
Пусте значення void

Похідні типи[ред. | ред. код]

Вказівники тип* i32* — вказівник на 32-бітне ціле
Масиви [число елементів x тип]
  • [10 x i32]
  • [8 x double]
Структури { i32, i32, double }
Вектор — спеціальний тип для спрощення SIMD-операцій. Вектор складається із 2^n значень примітивного типу — цілого або з плаваючою крапкою.
< число елементів x тип > < 4 x float > — вектор XMM
Функції
  • i32 (i32, i32)
  • float ({ float, float }, { float, float })

Система типів рекурсивна, тобто можна використовувати багатовимірні масиви, масиви структур, вказівники на структури і функції і т. д.

Операції[ред. | ред. код]

Більшість інструкцій у LLVM приймають два аргументи (операнда) і вертають одне значення (триадресний код). Значення визначаються текстовим ідентифікатором. Локальні значення позначаються префіксом %, а глобальні — @. Локальні значення також називають регістрами, а LLVM — віртуальною машиною з нескінченним числом регістрів. Приклад:

%sum = add i32 %n, 5 %diff = sub double %a, %b %z = add <4 x float> %v1, %v2 — поелементне додавання %cond = icmp eq %x, %y — Порівняння цілих чисел. Результат має тип i1 %success = call i32 @puts(i8* %str)

Тип операндів завжди вказується явно, і однозначно визначає тип результату. Операнди арифметичних інструкцій повинні мати однаковий тип, але самі інструкції «перевантажені» для будь-яких числових типів і векторів.

LLVM підтримує повний набір арифметичних операцій, побітових логічних операцій і операцій зсуву, а також спеціальні інструкції для роботи з векторами.

LLVM IR строго типізований, тому існують операції приведення типів, які явно кодуються спеціальними інструкціями. Набір із 9 інструкцій покриває всі можливі приведення між різними числовими типами: цілими і з рухомою комою, із знаком і без, різної розрядності і т.п. Крім цього є інструкції перетворення між цілими і вказівниками, а також інструкція bitcast, яка приведе все до всього, але за результат ви відповідаєте самі.

Пам’ять[ред. | ред. код]

Крім значень-регістрів, у LLVM є і робота із пам’яттю. Значення в пам’яті адресуються типізованими вказівниками. Звернутися до пам’яті можна за допомогою двох інструкцій: load і store. Наприклад:

%x = load i32* %x.ptr — отримати значення типу i32 по вказівнику %x.ptr %tmp = add i32 %x, 5 — додати 5 store i32 %tmp, i32* %x.ptr — і повернути назад

Інструкція malloc транслюється у виклик однойменної системної функції і виділяє пам’ять у купи, повертаючи значення — вказівник визначеного типу. У парі з нею йде інструкція free.

%struct.ptr = malloc { double, double }  %string = malloc i8, i32 %length  %array = malloc [16 x i32]  free i8* %string

Інструкція alloca виділяє пам’ять на стеку.

%x.ptr = alloca double — %x.ptr має тип double*  %array = alloca float, i32 8 — %array має тип float*, а не [8 x float]!

Пам’ять, виділена alloca, автоматично звільняється при виході із функції за допомогою інструкцій ret або unwind.

Супутні проєкти[ред. | ред. код]

З проєктів, заснованих на LLVM, що розвиваються паралельно, можна відзначити:

Відзнаки[ред. | ред. код]

У 2010 Асоціація обчислювальної техніки (ACM), найавторитетніша міжнародна організація, в області комп'ютерних систем присудила проєкту LLVM премію за внесок у розвиток мов програмування (SIGPLAN Programming Languages Software Award). Премія присуджується за значний вплив на пов'язані з мовами програмування дослідження, реалізації технологій і інструменти.

Примітки[ред. | ред. код]

  1. https://github.com/llvm/llvm-project/graphs/contributors?type=a
  2. LLVM 1.0 Release Notes. Архів оригіналу за 26 листопада 2018. Процитовано 15 січня 2019.
  3. LLVM: Frequently Asked Questions. Архів оригіналу за 13 липня 2013. Процитовано 23 грудня 2010.

Посилання[ред. | ред. код]