2016 in paleomammalogy

List of years in paleomammalogy
In paleontology
2013
2014
2015
2016
2017
2018
2019
In paleobotany
2013
2014
2015
2016
2017
2018
2019
In arthropod paleontology
2013
2014
2015
2016
2017
2018
2019
In paleoentomology
2013
2014
2015
2016
2017
2018
2019
In paleoichthyology
2013
2014
2015
2016
2017
2018
2019
In paleomalacology
2013
2014
2015
2016
2017
2018
2019
In reptile paleontology
2013
2014
2015
2016
2017
2018
2019
In archosaur paleontology
2013
2014
2015
2016
2017
2018
2019

This paleomammalogy list records new fossil mammal taxa that were described during the year 2016, as well as notes other significant paleomammalogy discoveries and events which occurred during that year.

Metatherians[edit]

Metatherian research[edit]

  • A near-complete skull, a snout and two maxillae assigned to the species Didelphodon vorax are described from the Late Cretaceous Hell Creek Formation (Montana and North Dakota, United States) by Wilson et al. (2016).[1]
  • Description of a new specimen of Malleodectes mirabilis and a study of phylogenetic relationships of this species is published by Archer et al. (2016).[2]
  • A study on the shape of the elbow joint of Thylacoleo carnifex and its implications for the predatory behavior of the species is published by Figueirido, Martín-Serra & Janis (2016).[3]
  • Claw marks are described from the Tight Entrance Cave (southwestern Australia) by Arman & Prideaux (2016), who interpret the marks as left by the marsupial lions.[4]
  • A study evaluating whether the climate changes were the primary driver of Pleistocene megafauna extinctions in Australia is published by Saltré et al. (2016).[5]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Chaeropus baynesi[6][7]

Sp. nov

Valid

Travouillon

Late Pliocene to early Pleistocene

Moorna Formation

 Australia

A relative of the pig-footed bandicoot.

Chimeralestes[8]

Gen. et sp. nov

Valid[9]

Engelman, Anaya & Croft

Miocene

Honda Group

 Bolivia

A palaeothentid paucituberculate. Genus includes new species C. ambiguus.

Cookeroo[10]

Gen. et 2 sp. nov

Valid

Butler et al.

Oligocene-Miocene

Riversleigh World Heritage Area

 Australia

A member of Macropodidae. Genus includes Cookeroo bulwidarri and Cookeroo hortusensis.

Ektopodon tommosi[11]

Sp. nov

Valid

Pledge

Late Oligocene

Namba Formation

 Australia

A member of Phalangeroidea belonging to the family Ektopodontidae.

Gumardee richi[12]

Sp. nov

Valid

Travouillon et al.

Early Miocene

Riversleigh World Heritage Area

 Australia

A member of Potoroinae.

Gumardee springae[12]

Sp. nov

Valid

Travouillon et al.

Late Oligocene

Riversleigh World Heritage Area

 Australia

A member of Potoroinae.

Gurbanodelta[13]

Gen. et sp. nov

Ni et al.

Late Paleocene (Gashatan)

 China

A probable member of the deltatheroidan family Deltatheridiidae. The type species is G. kara.

Kutjamarcoot[14]

Gen. et sp. nov

Valid

Chamberlain et al.

Early Miocene

Wipajiri Formation

 Australia

A bandicoot. The type species is Kutjamarcoot brevirostrum.

Lemdubuoryctes[15]

Gen. et sp. nov

Valid

Kear, Aplin & Westerman

Latest Pleistocene to Holocene

 Indonesia

Originally described as a member of the stem group of Peramelemorphia. The type species is L. aruensis. Travouillon & Phillips (2018) transferred this species to the genus Peroryctes.[16]

Microleo[17]

Gen. et sp. nov

Valid

Gillespie, Archer & Hand

Early Miocene

Riversleigh World Heritage Area

 Australia

A member of Thylacoleonidae. The type species is M. attenboroughi.

Minusculodelphis modicum[18]

Sp. nov

Valid

Oliveira, Zimicz & Goin

Itaboraian

Itaboraí Formation

 Brazil

A member of Jaskhadelphyidae, a species of Minusculodelphis.

Palaeothentes relictus[8]

Sp. nov

Valid[9]

Engelman, Anaya & Croft

Miocene

Honda Group

 Bolivia

A palaeothentid paucituberculate.

Palaeothentes serratus[8]

Sp. nov

Valid[9]

Engelman, Anaya & Croft

Miocene

Honda Group

 Bolivia

A palaeothentid paucituberculate.

Stelakoala[19]

Gen. et sp. nov

Valid

Black

Middle Miocene

Riversleigh World Heritage Area

 Australia

A member of Phascolarctidae. The type species is S. riversleighensis.

Whollydooleya[20]

Gen. et sp. nov

Valid

Archer et al.

Possibly middle or late Miocene

 Australia

A member of Dasyuridae of uncertain phylogenetic placement. The type species is W. tomnpatrichorum.

Eutherians[edit]

Research[edit]

  • A study on the date of the origin of the Placentalia and an analysis of the effect of the Cretaceous–Paleogene extinction event on placental evolution is published by Halliday, Upchurch & Goswami (2016).[21]
  • A study on the influence of the methods used to establish divergence dates on the studies reconstructing body-size evolution of the Cretaceous and Paleogene eutherian mammals is published by Halliday & Goswami (2016).[22]
  • A study on the relationship between the primary productivity of plant communities and the diversity of terrestrial large mammals in North America and Europe through the Neogene is published by Fritz et al. (2016).[23]
  • Studies of the phylogenetic relationships of the glyptodonts within Xenarthra, indicating that the glyptodonts were nested within the armadillo crown group, are published by Delsuc et al. (2016)[24] and Mitchell et al. (2016).[25]
  • A description of new fossil material of Abdounodus hamdii and a study of its phylogenetic relationships is published by Gheerbrant, Filippo & Schmitt (2016).[26]
  • A description of new fossil material of Palaeoamasia kansui and a study of phylogenetic relationships of embrithopods is published by Erdal, Antoine & Sen (2016).[27]
  • A study on the patterns of mastication in Neogene and Quaternary proboscideans as indicated by the anatomy of their teeth is published by von Koenigswald (2016).[28]
  • Part of a humerus of a large proboscidean, probably a member of the genus Deinotherium, is described from the Miocene of Finland by Salonen et al., representing the northernmost record of a Miocene proboscidean fossil in the world so far.[29]
  • Presence of lower incisors is reported in immature individuals of Cuvieronius hyodon by Mothé, Ferretti & Avilla (2018).[30]
  • A study on the diet of Platybelodon grangeri, as indicated by data from molar microwear analysis of tooth enamel, is published by Semprebon et al. (2016).[31]
  • A study on the phylogenetic relationships and mitogenomic diversity of North American mammoths, as well as its implications for mammoth population structure and dynamics during the late Pleistocene, is published by Enk et al. (2016).[32]
  • A study on the timing, causes, and consequences of the Holocene extinction of the relict woolly mammoth population from Saint Paul Island (Alaska) is published by Graham et al. (2016).[33]
  • A study on the phylogenetic relationships of the unallocated fossil species of the Old World leaf-nosed bats, particularly Miocene species from Riversleigh (Australia) is published by Wilson et al. (2016).[34]
  • A complete skull of the macraucheniid Huayqueriana cf. H. cristata is described from the Huayquerian Huayquerías Formation (Argentina) by Forasiepi et al. (2016).[35]
  • A study on the dentaries of several juvenile specimens of Prosantorhinus germanicus from the Miocene fossil lagerstätte Sandelzhausen (Germany) is published by Böhmer, Heissig & Rössner (2016), who reconstruct the tooth replacement pattern, life history and juvenile mortality profile of this taxon.[36]
  • An osteological study on the Pleistocene camelid fossils reported from Alaska and Yukon, assigned to the species Camelops hesternus, is published by Zazula et al. (2016).[37]
  • New fossil material of the Pleistocene wildebeest-like bovid Rusingoryx atopocranion is described from the Rusinga Island (Kenya) by O’Brien et al. (2016), who note the presence of large, hollow, bony nasal crests in this mammal, similar to crests present in hadrosaurid dinosaurs.[38]
  • A study on the age and phylogenetic relationships of late Pleistocene bison fossils from North America and their implications for establishing when the Pleistocene ice free corridor along the eastern slopes of the Rocky Mountains was open is published by Heintzman et al. (2016).[39]
  • Studies on the origin and evolutionary history of the European bison based on ancient DNA recovered from bison fossils are published by Soubrier et al. (2016)[40] and Massilani et al. (2016).[41]
  • A study on the diet and evolution of ecologically-relevant traits in members of the genus Hoplitomeryx as indicated by tooth wear, hypsodonty and body mass estimations is published by DeMiguel (2016).[42]
  • Basu, Falkingham & Hutchinson (2016) present a reconstruction of the skeleton of Sivatherium giganteum and estimate adult body mass of members of the species.[43]
  • A study estimating the ability of the cetacean Ambulocetus and the desmostylians Paleoparadoxia, Neoparadoxia and Desmostylus to support themselves on land as indicated by the strengths of their rib cages against vertical compression is published by Ando & Fujiwara (2016).[44]
  • A study on the cochlear anatomy of a xenorophid specimen from the Oligocene Belgrade Formation in North Carolina (subsequently assigned to the genus Echovenator[45]) and its implications for the evolution of high-frequency hearing and echolocation in early toothed whales is published by Park, Fitzgerald & Evans (2016).[46]
  • Description of an early Miocene dolphin from Kaikōura (New Zealand), closely related to Papahu taitapu, and a study of the phylogenetic relationships of Papahu is published by Tanaka & Fordyce (2016).[47]
  • Description of a new skull of the Pliocene porpoise Numataphocoena yamashitai recovered from the Horokaoshirarika Formation (Hokkaido, Japan) and a study on the phylogenetic relationships of the species is published by Tanaka & Ichishima (2016).[48]
  • A new aetiocetid specimen is described from the late Oligocene Pysht Formation (Washington, United States) by Marx et al. (2016), who interpret its tooth wear as inconsistent with the presence of baleen, and instead indicative of suction feeding.[49]
  • A study on the evolution of large body size in early baleen whale evolution is published by Tsai & Kohno (2016).[50]
  • A study on the anatomy of the ear region of Miocaperea pulchra and its implications for the proposed origin of the pygmy right whale from the cetotheriids is published by Marx & Fordyce (2016).[51]
  • A study on the baleen microstructures found in association with the skeleton of a late Miocene balaenopteroid whale recovered from the Pisco Formation (Peru) is published by Gioncada et al. (2016).[52]
  • A study on the anatomy and paleobiology of the Eocene pangolin Patriomanis americana is published by Gaudin, Emry & Morris (2016).[53]
  • A revision of the systematics of the North American members of Nimravidae is published by Barrett (2016).[54]
  • A study on the bone thickness of dentary bones of the specimens of Smilodon fatalis recovered from the La Brea Tar Pits and its implications for the changes in the diet of the saber-toothed cats through the time-periods that are captured at this site, is published by Binder, Cervantes & Meachen (2016).[55]
  • A study on the phylogenetic relationships of the cave lion, based on the first mitochondrial genome sequences for this taxon, is published by Barnett et al. (2016).[56]
  • A description of new bear dog fossils from the early Miocene of Uganda and Namibia and a systematic revision of the Miocene bear dogs known from Africa is published by Morales, Pickford & Valenciano (2016).[57]
  • A description of new fossil material of Megalictis ferox and a study of phylogenetic relationships of the oligobunine mustelids is published by Valenciano et al. (2016).[58]
  • A study on the feeding strategy of the arctoid Kolponomos is published by Tseng, Grohe & Flynn (2016).[59]
  • A study of phylogenetic relationships of bears belonging to the genus Arctotherium, indicating that they were more closely related to the spectacled bear than to short-faced bears, is published by Mitchell et al. (2016).[60]
  • A study on the anatomy of the auditory region of the Pleistocene bear Arctotherium tarijense is published by Arnaudo et al. (2016).[61]
  • A description of the most recent cave bear remains reported so far, recovered from the Stajnia Cave (Poland), and a study on the cave bear’s extinction time is published by Baca et al. (2016).[62]
  • A study on the diet of the cave bears, as indicated by the morphology of their mandibles, is published by van Heteren et al. (2016).[63]
  • A study on the anatomy of Enaliarctos and its implications for the evolution of tooth spacing, tooth size and pierce-feeding in pinnipeds is published by Churchill & Clementz (2016).[64]
  • A study on the enamel ultrastructure in modern eared seals and extinct Pelagiarctos is published by Loch et al. (2016).[65]
  • Fossils of an earless seal belonging to the tribe Miroungini (the tribe containing elephant seals) are described from the late Pliocene Petane Formation (New Zealand) by Boessenecker & Churchill (2016), representing the oldest record of Miroungini reported so far.[66]
  • Virtual cranial endocasts of the Eocene rodents Paramys copei and Paramys delicatus are described by Bertrand, Amador-Mughal and Silcox (2016).[67]
  • The taxonomic revision of the fossil New World porcupines known from North America is published by Sussman et al. (2016), who transfer the species Erethizon kleini Frazier (1981) and Erethizon poyeri Hulbert (1997), as well as specimens previously identified as North American porcupines from Irvingtonian faunas in Florida and Aguascalientes, Mexico, to the genus Coendou.[68]
  • Virtual cranial endocasts of the notharctines Notharctus tenebrosus and Smilodectes gracilis, as well as the adapid adapiform Adapis parisiensis are reconstructed by Harrington et al. (2016).[69]
  • Eocene (Ypresian) adapoid and omomyid limb bones are described from the Vastan lignite mine (Gujarat, India) by Dunn et al. (2016).[70]
  • Isolated teeth of a member of the genus Cebus and a member of the genus Cebuella are described from the Miocene (Mayoan) Pebas Formation (Peru) by Marivaux et al. (2016).[71]
  • Fossils of the probable relative of the gorillas, Chororapithecus abyssinicus, are dated to ~8.0 Myr by Katoh et al. (2016).[72]
  • Fossils of Homo floresiensis and the deposits containing them are dated to between about 100 000 and 60 000 years ago by Sutikna et al. (2016).[73]
  • Hominin fossils similar in most dimensions and morphological characteristics to those of Homo floresiensis are described from the early Middle Pleistocene site in Flores, Indonesia by van den Bergh et al. (2016).[74][75]
  • A study on the cause of death of the Australopithecus afarensis specimen Lucy is published by Kappelman et al. (2016).[76]
  • A study on the bone structural properties of the femur and humerus of the Australopithecus afarensis specimen Lucy and its implications for the locomotor behavior and ecology of the species is published by Ruff et al. (2016).[77]
  • A study on the locomotor mechanics and footprint formation of the tracemaker of the Pliocene Laetoli footprints is published by Hatala, Demes & Richmond (2016).[78]
  • Pliocene hominin tracks discovered in the new site at Laetoli locality are described by Masao et al. (2016), who estimate the height of one of the trackmakers to be about 1.65 metres, thus exceeding previous estimates for Australopithecus afarensis.[79]
  • A study on the phylogenetic relationships of Homo naledi is published by Dembo et al. (2017).[80]
  • 1.5-million-year-old footprint assemblages produced by at least 20 different individuals of Homo erectus are described from multiple sites near Ileret, Kenya by Hatala et al. (2016).[81]
  • A study on the tracks of Homo erectus from Ileret, indicating repeated use of lakeshore habitats by members of this species, is published by Roach et al. (2016).[82]
  • A study on genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia and on sequences of chromosome 21 of two Neanderthals from Spain and Croatia, and on their implications for the knowledge of gene flow events between modern and archaic humans, is published by Kuhlwilm et al. (2019).[83]

New taxa[edit]

Xenarthrans[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Aymaratherium[84]

Gen. et sp. nov

Valid

Pujos et al.

Montehermosan

Umala Formation

 Bolivia

A member of Nothrotheriidae. The type species is Aymaratherium jeani.

Parutaetus punaensis[85]

Sp. nov

Valid

Ciancio et al.

Middle–late Eocene

Geste Formation

 Argentina

An armadillo belonging to the subfamily Euphractinae; a species of Parutaetus.

Punatherium[85]

Gen. et sp. nov

Valid

Ciancio et al.

Middle–late Eocene

Geste Formation

 Argentina

An armadillo of uncertain phylogenetic placement. The type species is Punatherium catamarquensis.

Afrotherians[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Aphanobelodon[86]

Gen. et sp. nov

Valid[87]

Wang et al.

Middle Miocene

Zhangenbao Formation

 China

A member of Amebelodontidae. The type species is A. zhaoi.

Eurybelodon[88]

Gen. et sp. nov

Valid

Lambert

Miocene (late Clarendonian)

Juntura Formation

 United States
( Oregon)

A gomphothere. The type species is Eurybelodon shoshanii.

Konobelodon robustus[89]

Sp. nov

Valid

Wang et al.

Late Miocene

Liushu Formation

 China

A gomphothere, a species of Konobelodon.

Lentiarenium[90]

Gen. et comb. nov

Valid

Voss in Voss, Berning & Reiter

Oligocene (Chattian)

Linz-Melk Formation

 Austria

A member of Sirenia belonging to the family Dugongidae. The type species is "Halitherium" cristolii Fitzinger (1842).

Prototherium ausetanum[91]

Sp. nov

Valid

Balaguer & Alba

Eocene

 Spain

A member of Dugongidae, a species of Prototherium.

Sinomammut[92]

Gen. et sp. nov

Valid

Mothé et al.

Late Miocene

Xihe-Lixian Basin

 China

A member of Mammutidae. The type species is Sinomammut tobieni.

Sinomastodon praeintermedius[93]

Sp. nov

Valid

Wang et al.

Late Miocene

Zhaotong Formation

 China

A gomphothere, a species of Sinomastodon.

Bats[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Aegyptonycteris[94]

Gen. et sp. nov

Valid

Simmons, Seiffert & Gunnell

Eocene (Priabonian)

Birket Qarun Formation

 Egypt

An omnivorous bat belonging to the family Aegyptonycteridae. The type species is Aegyptonycteris knightae.

Chambinycteris[95]

Gen. et sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A bat of uncertain phylogenetic placement. The type species is C. pusilli.

Drakonycteris[95]

Gen. et sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Algeria

A bat of uncertain phylogenetic placement. The type species is D. glibzegdouensis.

Hipposideros (Pseudorhinolophus) africanum[95]

Sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A roundleaf bat.

Hipposideros (Pseudorhinolophus) amenhotepos[96]

Sp. nov

Valid

Gunnell et al.

Miocene

 Egypt

A roundleaf bat.

Khoufechia[95]

Gen. et sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A member of Nycteridae. The type species is K. gunnelli.

?Necromantis fragmentum[95]

Sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A member of Necromantidae.

?Palaeophyllophora tunisiensis[95]

Sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A member of Hipposideridae.

Premonycteris[97]

Gen. et sp. nov

Valid

Hand et al.

Eocene (late Ypresian)

 France

A vesper bat. The type species is P. vesper.

Pseudovespertiliavus[95]

Gen. et sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Algeria

A sac-winged bat. The type species is P. parva.

Synemporion[98]

Gen. et sp. nov

Valid

Ziegler, Howarth & Simmons

Middle Pleistocene to late Holocene

 United States
( Hawaii)

A vesper bat. The type species is Synemporion keana.

?Vespertiliavus aenigma[95]

Sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A sac-winged bat.

Vespertiliavus kasserinensis[95]

Sp. nov

Valid

Ravel in Ravel et al.

Eocene

 Tunisia

A sac-winged bat.

Odd-toed ungulates[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Cadurcodon maomingensis[99]

Sp. nov

Valid

Averianov et al.

Eocene

Youganwo Formation

 China

A member of Amynodontidae.

Hipparion philippus[100]

Sp. nov

Valid

Koufos & Vlachou

Miocene (early Turolian)

 Greece

A member of Equidae, a species of Hipparion.

Hipparion sithonis[100]

Sp. nov

Valid

Koufos & Vlachou

Miocene (early Turolian)

 Greece

A member of Equidae, a species of Hipparion.

Pappaceras meiomenus[101]

Sp. nov

Wang et al.

Late Early Eocene

Arshanto Formation

 China

A member of Rhinocerotoidea belonging to the family Paraceratheriidae.

Propalaeotherium sudrei[102]

Sp. nov

Valid

Remy, Krasovec & Marandat

Eocene

 France

A member of Palaeotheriidae.

Victoriaceros hooijeri[103]

Sp. nov

Valid

Geraads et al.

Early Miocene

 Kenya

A rhinoceros, tentatively assigned to the genus Victoriaceros.

Xylotitan[104]

Gen. et sp. nov

Valid

Mihlbachler & Samuels

Eocene

Clarno Formation

 United States
( Oregon)

A member of Brontotheriidae. Genus includes new species X. cenosus.

Even-toed ungulates[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Bransatochoerus[105]

Gen. et comb. nov

Valid

Pickford

 France

A member of Suoidea belonging to the family Doliochoeridae (previously called the Palaeochoeridae); a new genus for "Palaeocherus" meissneri mut. elaverensis Viret (1929) (in the rank of the species Bransatochoerus elaverensis).

Celebochoerus cagayanensis[106]

Sp. nov

Valid

Ingicco in Ingicco et al.

Middle Pleistocene

Awidon Mesa Formation

 Philippines

A member of Suidae.

Diplobunops kardoula[107]

Sp. nov

Valid

Emery, Davis & Hopkins

Eocene (Duchesnean)

 United States
( Oregon)

An agriochoerid oreodont, a species of Diplobunops.

Dorcatherium maliki[108]

Sp. nov

Valid

Kostopoulos & Sen

Miocene (Vallesian)

Ergene Formation

 Turkey

A chevrotain.

Fremdohyus[109]

Gen. et comb. nov

Valid

Prothero

Arikareean

John Day Formation

 United States
( Oregon)

A peccary. A new genus for "Thinohyus" osmonti Sinclair (1905).

Honanotherium bernori[110]

Sp. nov

Valid

Solounias & Danowitz

Late Miocene

 Iran

A member of Giraffidae, a species of Honanotherium.

Magwetherium[111]

Gen. et sp. nov

Valid

Ducrocq et al.

Eocene

Pondaung Formation

 Myanmar

A diacodexeid dichobunoid. The type species is Magwetherium burmense.

Megaloceros stavropolensis[112]

Sp. nov

Valid

Titov & Shvyreva

Early Pleistocene (late Villafranchian)

 Russia
( Stavropol Krai)

A deer. Originally described as a species of Megaloceros; Croitor (2018) transferred this species to the genus Arvernoceros.[113]

Nabotherium[114]

Gen. et comb. nov

Valid

Sileem et al.

Early Oligocene

Jebel Qatrani Formation

 Egypt

An anthracothere; a new genus for "Rhagatherium" aegyptiacum Andrews (1906).

Prolibytherium fusus[115]

Sp. nov

Valid

Danowitz, Domalski & Solounias

Early Miocene

 Pakistan

A member of Ruminantia, a species of Prolibytherium.

Protovis[116]

Gen. et sp. nov

Valid

Wang, Li & Takeuchi

Pliocene

Zanda Basin

 China

A relative of the sheep. The type species is Protovis himalayensis.

Retroporcus[117]

Gen. et comb. nov

Valid

Pickford

Miocene

 Austria
 France
 Germany
 India
 Pakistan
 Serbia
 Spain
  Switzerland
 Turkey

A tetraconodontine suid. The type species is Retroporcus complutensis Pickford & Laurent (2014); genus also contains "Conohyus" sindiensis Lydekker, 1884 and Hyotherium soemmeringi matritensis Golpe-Posse, 1972 (recombined as a separate species Retroporcus matritensis). The generic name was originally published in an article from 2014,[118] but without the diagnosis, necessitating its validation in a later publication.[117]

Cetaceans[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Acrophyseter robustus[119]

Sp. nov

Valid[120]

Lambert, Bianucci & De Muizon

Miocene (late SerravallianTortonian)

Pisco Formation

 Peru

Arktocara[121]

Gen. et sp. nov

Valid

Boersma & Pyenson

Oligocene (probably Chattian)

Poul Creek Formation

 United States
( Alaska)

A member of Platanistoidea related to Allodelphis. The type species is A. yakataga.

Awadelphis[122]

Gen. et sp. nov

Valid

Murakami

Latest Miocene

Senhata Formation

 Japan

A member of Inioidea. The type species is A. hirayamai.

Awamokoa[123]

Gen. et sp. nov

Valid[124]

Tanaka & Fordyce

Late Oligocene

Kokoamu Greensand

 New Zealand

A member of Platanistoidea. The type species is A. tokarahi.

Chavinziphius[125]

Gen. et sp. nov

Valid

Bianucci et al.

Late Miocene

Pisco Formation

 Peru

A beaked whale. The type species is C. maxillocristatus.

Chimuziphius[125]

Gen. et sp. nov

Valid

Bianucci et al.

Late Miocene

Pisco Formation

 Peru

A beaked whale. The type species is C. coloradensis.

Dagonodum[126]

Gen. et sp. nov

Valid

Ramassamy

Late Miocene

Gram Formation

 Denmark

A beaked whale. Genus includes new species D. mojnum.

Echovenator[127]

Gen. et sp. nov

Valid

Churchill et al.

Late Oligocene

Chandler Bridge Formation

 United States
( South Carolina)

A member of Xenorophidae. The type species is E. sandersi.

Fragilicetus[128]

Gen. et sp. nov

Valid

Bisconti & Bosselaers

Early Pliocene

Kattendijk Sands

 Belgium
 South Africa[129]

A member of Balaenopteridae showing a mix of morphological characters that is intermediate between those of Eschrichtiidae and those of Balaenopteridae. The type species is Fragilicetus velponi.

Goedertius[130]

Gen. et. sp. nov

Valid

Kimura & Barnes

Miocene (late Aquitanian)

Nye Formation

 United States ( Oregon)

A member of Allodelphinidae. The type species is Goedertius oregonensis.

Incakujira[131]

Gen. et sp. nov

Valid

Marx & Kohno

Miocene

Pisco Formation

 Peru

A rorqual. The type species is I. anillodefuego.

Mammalodon hakataramea[132]

Sp. nov

Valid

Fordyce & Marx

Oligocene (Duntroonian, 27 Ma)

Kokoamu Greensand

 New Zealand

A species of Mammalodon, a member of Mammalodontidae.

Matapanui[133][134]

Gen. et sp. nov

Valid[135]

Boessenecker & Fordyce

Oligocene (latest Whaingaroan, 28.1–27.3 Ma)

Kokoamu Greensand

 New Zealand

A member of Eomysticetidae. The type species is M. waihao.

Mesoplodon posti[136]

Sp. nov

Valid

Lambert & Louwye

Pliocene (Zanclean)

 Belgium

A mesoplodont whale.

Metopocetus hunteri[137]

Sp. nov

Valid

Marx, Bosselaers & Louwye

Miocene (late Tortonian)

Breda Formation

 Netherlands

A member of Cetotheriidae, a species of Metopocetus.

Mithridatocetus[138]

Gen. et sp. et comb. nov

Valid

Gol'din & Startsev

Miocene (Tortonian)

Chersonian Formation

 Ukraine Russia

A member of Cetotheriidae. Genus includes new species M. eichwaldi, as well as "Kurdalagonus" adygeicus Tarasenko & Lopatin (2012) and "Cetotherium" mayeri (a nomen dubium).

Ninjadelphis[130]

Gen. et. sp. nov

Valid

Kimura & Barnes

Miocene (late Burdigalian)

Hiramatsu Formation

 Japan

A member of Allodelphinidae. The type species is Ninjadelphis ujiharai.

Rayanistes[139]

Gen. et sp. nov

Valid

Bebej et al.

Eocene (Lutetian)

Midawara Formation

 Egypt

A member of Remingtonocetidae. The type species is Rayanistes afer.

Sitsqwayk[140]

Gen. et sp. nov

Valid

Peredo & Uhen

Late Oligocene

Pysht Formation

 United States
( Washington)

A basal member of Chaeomysticeti. The type species is S. cornishorum.

Whakakai[141]

Gen. et sp. nov

Valid

Tsai & Fordyce

Oligocene (Chattian)

Kokoamu Greensand

 New Zealand

A baleen whale. The type species is Whakakai waipata.

Zarhinocetus donnamatsonae[130]

Sp. nov

Valid

Kimura & Barnes

Miocene (late Burdigalian-early Langhian)

Astoria Formation

 United States ( Washington)

A member of Allodelphinidae.

Carnivorans[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Actiocyon parverratis[142]

Sp. nov

Valid

Smith, Czaplewski & Cifelli

Miocene (Barstovian)

Monarch Mill Formation

 United States
( Nevada)

A simocyonine ailurid (a relative of the red panda), a species of Actiocyon.

Alagtsavbaatar[143]

Gen. et comb. nov

Valid

Egi et al.

Late Eocene

Ergilin Dzo Formation

 Mongolia

A member of Feliformia. The type species is "Stenoplesictis" indigenus Dashzeveg (1996).

Angelarctocyon[144]

Gen. et comb. nov

Valid

Tomiya & Tseng

Eocene (Duchesnean)

Chambers Tuff

 United States
( Texas)

A bear dog. The type species is "Miacis" australis Gustafson (1986).

Brevimalictis[142]

Gen. et sp. nov

Valid

Smith, Czaplewski & Cifelli

Miocene (Barstovian)

Monarch Mill Formation

 United States
( Nevada)

A member of Mustelidae of uncertain phylogenetic placement. The type species is Brevimalictis chikasha.

Cynarctus wangi[145]

Sp. nov

Valid

Jasinski & Wallace

Middle Miocene

Choptank Formation

 United States
( Maryland)

A member of Canidae belonging to the subfamily Borophaginae, a species of Cynarctus.

Enhydrictis hoffstetteri[146]

Sp. nov

Valid

Geraads

Pleistocene

 Algeria

An otter-like member of the Mustelidae.

Gustafsonia[144]

Gen. et comb. nov

Valid

Tomiya & Tseng

Eocene (Chadronian)

Chambers Tuff

 United States
( Texas)

A bear dog. The type species is "Miacis" cognitus Gustafson (1986).

Lontra weiri[147]

Sp. nov

Valid

Prassack

Pliocene

Hagerman Fossil Beds

 United States
( Idaho)

An otter, a species of Lontra.

Lutraeximia[148]

Gen. et sp. nov

Valid

Cherin et al.

Early Pleistocene (late Villafranchian)

 Azerbaijan[149]
 Italy

An otter. The type species is Lutraeximia umbra.

Maofelis[150]

Gen. et sp. nov

Valid

Averianov et al.

Middle-late Eocene

Youganwo Formation

 China

A member of Nimravidae. The type species is Maofelis cantonensis.

Negodiaetictis[142]

Gen. et sp. nov

Valid

Smith, Czaplewski & Cifelli

Miocene (Barstovian)

Monarch Mill Formation

 United States
( Nevada)

A member of Mustelidae of uncertain phylogenetic placement. The type species is Negodiaetictis rugatrulleum.

Watay[151]

Gen. et sp. nov

Valid

McLaughlin, Hopkins & Schmitz

Hemingfordian

Mascall Formation

 United States
( Oregon)

A member of Mustelidae. The type species is W. tabutsigwii.

Rodents[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Abudhabia abagensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A gerbil related to members of the genus Taterillus.

Abudhabia wangi[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A gerbil related to members of the genus Taterillus.

Allodistylomys[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Distylomyidae. Genus includes new species A. stepposus.

Allohuaxiamys[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Muridae. Genus includes new species A. gaotegeensis.

Ansomys borealis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Aplodontiidae.

Ansomys lophodens[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Aplodontiidae.

Ansomys robustus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Aplodontiidae.

Apatodemus[153]

Gen. et sp. nov

Valid

Savorelli, Colombero & Masini

Miocene

 Italy

A member of Muridae. The type species is A. degiulii.

Argouburus[154]

Gen. et sp. nov

Valid[155]

Marivaux et al.

Early Oligocene

Samlat Formation

Western Sahara

An anomalure. The type species is A. minutus.

Atlantocerus exilis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A relative of the Barbary ground squirrel.

Atlantocerus major[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A relative of the Barbary ground squirrel.

Ayakozomys mandaltensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A muroid rodent belonging to the family Tachyoryctoididae.

Ayakozomys ultimus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A muroid rodent belonging to the family Tachyoryctoididae.

Birkamys[156]

Gen. et sp. nov

Valid

Sallam & Seiffert

Eocene (late Priabonian)

Jebel Qatrani Formation

 Egypt

A member of Phiomorpha of uncertain phylogenetic placement. The type species is Birkamys korai.

Borsodia mengensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of Arvicolinae.

Brachyscirtetes tomidai[157]

Sp. nov

Valid

Li

Late Miocene

 China

A member of Dipodidae, a species of Brachyscirtetes.

Chambiramys[158]

Gen. et 2 sp. nov

Valid

Boivin et al.

Late Oligocene

Chambira Formation

 Peru

A caviomorph rodent of uncertain phylogenetic placement. The type species is C. sylvaticus; genus also includes C. shipiborum.

Chukimys[159]

Gen. et sp. nov

Valid

Barbiere et al.

Late Pliocene

Brochero Formation

 Argentina

A member of Sigmodontinae. The type species is C. favaloroi.

Colloides[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent. Genus includes new species C. xiaomingi.

Cricetodon fengi[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Cricetodon fikreti[160]

Sp. nov

Valid

Çinar Durgut & Ünay

Early Miocene

 Turkey

A member of Cricetodontini.

Cricetodon magnesiensis[160]

Sp. nov

Valid

Çinar Durgut & Ünay

Early Miocene

 Turkey

A member of Cricetodontini.

Cricetodon sonidensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Cricetodon trallesensis[160]

Sp. nov

Valid

Çinar Durgut & Ünay

Early Miocene

 Turkey

A member of Cricetodontini.

Cricetodon yapintiensis[160]

Sp. nov

Valid

Çinar Durgut & Ünay

Early Miocene

 Turkey

A member of Cricetodontini.

Dakhlamys[154]

Gen. et sp. nov

Valid[155]

Marivaux et al.

Early Oligocene

Samlat Formation

Western Sahara

A possible member of Zegdoumyidae. The type species is D. ultimus.

Dehmisciurus[161]

Gen. et comb. nov

Valid

Marković, de Bruijn & Wessels

Late Oligocene – Early Miocene

 Austria
 Bosnia and Herzegovina
 Germany
 Serbia
 Spain
 Turkey

A member of the family Sciuridae. The type species is "Ratufa" obtusidens Dehm (1950).

Dipoides mengensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Castoridae.

Dipus nanus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A relative of the northern three-toed jerboa.

Dipus pliocenicus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A relative of the northern three-toed jerboa.

Dolocylindrodon[162]

Gen. et 2 sp. et comb. nov

Valid

Korth & Tabrum

Eocene-Oligocene

 United States
( Montana
 Texas
 Wyoming)

A member of Cylindrodontidae. The type species is D. vukae; genus also includes new species D. rahnensis, as well as "Pseudocylindrodon" medius Burke (1938), "Pseudocylindrodon" tobeyi Black (1970) and "Pseudocylindrodon" texanus Wood (1974).

Elfomys catalaunicus[163]

Sp. nov

Valid

Bonilla-Salomón et al.

Eocene

 Spain

A member of Theridomyidae, a species of Elfomys.

Ellobius (Bramus) pomeli[164]

Sp. nov

Valid

Tesakov

Early Middle Pleistocene

Arapi Formation

 Armenia

A species of Ellobius.

Elymys ? emryi[165]

Sp. nov

Valid

Kelly & Murphey

Eocene (early Uintan)

Turtle Bluff Member, Bridger Formation

 United States
( Wyoming)

A possible member of Dipodidae.

Eozapus major[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A relative of the Chinese jumping mouse.

Eucastor plionicus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Castoridae.

Eucricetodon wangae[166]

Sp. nov

Valid

Li, Meng & Wang

Late Eocene

 China

A member of Cricetidae, a species of Eucricetodon.

Eutypomys productus[167]

Sp. nov

Valid

Korth

Oligocene (Whitneyan)

 United States
( South Dakota)

A member of the family Eutypomyidae.

Geomys tyrioni[168]

Sp. nov

Valid

Martin

Early Pleistocene

Meade Basin

 United States
( Kansas)

A pocket gopher, a species of Geomys.

Gliruloides[169]

Gen. et sp. et comb. nov

Valid

Wu et al.

Late Oligocene to early Miocene

Junggar Basin

 China
 Turkey

A dormouse related to the forest dormouse. The type species is Gliruloides zhoui; genus also includes "Vasseuromys" duplex Ünay (1994).

Gobicricetodon arshanensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Hylopetes bellus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A squirrel, a species of Hylopetes.

Hylopetes yani[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A squirrel, a species of Hylopetes.

Hystricops mengensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Castoridae.

Irtyshogaulus[170]

Gen. et 2 sp. nov

Valid

Lu et al.

Early Miocene

Junggar Basin

 China

A member of Mylagaulidae belonging to the subfamily Promylagaulinae. The type species is I. minor; genus also includes I. major.

Karnimatoides[152]

Gen. et comb. nov

Valid

Qiu & Li

Neogene

 China

A member of Murinae. The type species is K. hipparionus (Schlosser, 1924).

Keramidomys magnus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Eomyidae.

Khanomys[152]

Gen. et 2 sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent. Genus includes new species K. baii and K. cheni.

Kowalskia shalaensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Lagostomus telenkechanum[171]

Sp. nov

Valid

Rasia & Candela

Late Miocene

Arroyo Chasicó Formation

 Argentina

A species of Lagostomus.

Ligerimys asiaticus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Eomyidae.

Loretomys[158]

Gen. et sp. nov

Valid

Boivin et al.

Late Oligocene

Chambira Formation

 Peru

A caviomorph rodent belonging to the superfamily Octodontoidea. The type species is L. minutus.

Megacricetodon hellenicus[172]

Sp. nov

Valid

Oliver & Peláez-Campomanes

Early Miocene

 Greece

A cricetid rodent, a species of Megacricetodon.

Metaeucricetodon[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent. Genus includes new species M. mengicus.

Microtocricetus shalaensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Microtoscoptes fahlbuschi[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Mioheteromys subterior[173]

Sp. nov

Valid

Korth & Evander

Miocene (early Barstovian)

 United States
( Nebraska)

A heteromyid rodent, a species of Mioheteromys.

Mimomys chandolensis[174]

Sp. nov

Valid

Tiunov, Golenishchev & Voyta

Late Pleistocene

 Russia
( Primorsky Krai)

An arvicoline cricetid, a species of Mimomys.

Mimomys teilhardi[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of Arvicolinae.

Minocastor[175]

Gen. et sp. nov

Valid

Mörs, Tomida & Kalthoff

Early Miocene

Nakamura Formation

 Japan

A member of Castoridae. The type species is Minocastor godai.

Mubhammys[156]

Gen. et sp. nov

Valid

Sallam & Seiffert

Eocene (late Priabonian)

Jebel Qatrani Formation

 Egypt

A member of Phiomorpha of uncertain phylogenetic placement. The type species is Mubhammys vadumensis.

Myocricetodon tomidai[176]

Sp. nov

Valid

Lindsay & Flynn

Early Miocene

Chitarwata Formation
Vihowa Formation

 Pakistan

A member of Cricetidae, a species of Myocricetodon.

Mystemys[177]

Gen. et sp. nov

Valid

Savorelli & Masini

Miocene

 Italy

A member of Cricetidae. The type species is M. giganteus.

Neochoerus occidentalis[178]

Sp. nov.

Valid

Carranza-Castañeda

Late Blancan-Irvingtonian

 Mexico

Nonanomalurus parvus[154]

Sp. nov

Valid[155]

Marivaux et al.

Early Oligocene

Samlat Formation

Western Sahara

A member of Anomaluroidea.

?Notoparamys blochi[179]

Sp. nov

Valid

Gunnell, Zonneveld & Bartels

Wasatchian

Wasatch Formation

 United States
( Wyoming)

A member of Ischyromyidae belonging to the subfamily Paramyinae, tentatively assigned to the genus Notoparamys.

Orientiglis[152]

Gen. et comb. nov

Valid

Qiu & Li

Neogene

 China

A dormouse related to members of the genus Dryomys. Genus includes O. wuae (Qiu, 1996).

Oromys[154]

Gen. et sp. nov

Valid[155]

Marivaux et al.

Early Oligocene

Samlat Formation

Western Sahara

A member of Zenkerellinae. The type species is O. zenkerellinopsis.

Paciculus walshi[180]

Sp. nov

Valid

Lindsay et al.

Oligocene

Otay Formation

 United States
( California)

A member of Cricetidae, a species of Paciculus.

Palaeosciurus aoerbanensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A ground squirrel.

Palaeosteiromys[158]

Gen. et sp. nov

Valid

Boivin et al.

Late Oligocene

Chambira Formation

 Peru

A New World porcupine. The type species is P. amazonensis.

Pappocricetodon siziwangqiensis[166]

Sp. nov

Valid

Li, Meng & Wang

Late Eocene

 China

A member of Cricetidae, a species of Pappocricetodon.

Paradelomys santjaumensis[163]

Sp. nov

Valid

Bonilla-Salomón et al.

Eocene

 Spain

A member of Theridomyidae, a species of Paradelomys.

Paralactaga parvidens[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of Dipodidae related to members of the genus Allactaga.

Paralactaga shalaensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of Dipodidae related to members of the genus Allactaga.

Parameniscomys[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Aplodontiidae. Genus includes new species P. mengensis.

Paranomalurus riodeoroensis[154]

Sp. nov

Valid[155]

Marivaux et al.

Early Oligocene

Samlat Formation

Western Sahara

An anomalure.

Paratheridomys[181]

Gen. et comb. nov

Valid

Vianey-Liaud & Marivaux

Oligocene

 Belgium
 France
 Germany
  Switzerland

A member of Theridomyidae. The type species is "Theridomys" ludensis Vianey-Liaud (1985); genus also includes P. margaritae (Vianey-Liaud, 1989) and P. vassoni (Pomel, 1853).

Pentabuneomys fejfari[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Eomyidae.

Plesiodipus robustus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Plesiosciurus zhengi[182]

Sp. nov

Valid

Qiu & Jin

Cenozoic (probably Miocene)

 China

A member of Sciurini.

Plesiosteiromys[158]

Gen. et sp. nov

Valid

Boivin et al.

Late Oligocene

Chambira Formation

 Peru

A caviomorph rodent, possibly a New World porcupine. The type species is P. newelli.

Postcopemys chapalensis[183]

Sp. nov

Valid

Rincón et al.

Early Pliocene

Chapala Formation

 Mexico

A member of Cricetidae.

Potamarchus adamiae[184]

Sp. nov

Valid

Kerber et al.

Late Miocene

Solimões Formation

 Brazil

A potamarchine dinomyid, a species of Potamarchus.

Potwarmus mahmoodi[176]

Sp. nov

Valid

Lindsay & Flynn

Early Miocene

Vihowa Formation

 Pakistan

A member of Cricetidae, a species of Potwarmus.

Primus cheemai[176]

Sp. nov

Valid

Lindsay & Flynn

Late Oligocene to Early Miocene

Chitarwata Formation
Vihowa Formation

 Pakistan

A member of Cricetidae, a species of Primus.

Proansomys badamae[185]

Sp. nov

Valid

Maridet et al.

Late Oligocene

Hsanda Gol Formation

 Mongolia

A member of Aplodontiidae.

Prodistylomys mengensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Distylomyidae.

Progonomys shalaensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Muridae.

Protalactaga lophodens[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of Dipodidae related to members of the genus Allactaga.

Pseudaplodon amuwusuensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Aplodontiidae.

Pseudopotamarchus[184]

Gen. et sp. nov

Valid

Kerber et al.

Late Miocene

Solimões Formation

 Brazil

A potamarchine dinomyid. The type species is Pseudopotamarchus villanuevai.

Pseudoratufa[182]

Gen. et sp. nov

Valid

Qiu & Jin

Cenozoic (probably Miocene)

 China

A relative of the oriental giant squirrels. The type species is P. wanensis.

Quadrimys[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A member of the family Aplodontiidae. Genus includes new species Q. paradoxus.

Rhinocerodon abagensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent.

Sayimys negevensis[186]

Sp. nov

Valid

López-Antoñanzas et al.

Early Miocene

Middle Hatzeva Formation

 Israel

A gundi, a species of Sayimys.

Scleromys praecursor[158]

Sp. nov

Valid

Boivin et al.

Late Oligocene

Chambira Formation

 Peru

A caviomorph rodent belonging to the superfamily Chinchilloidea. Originally described as a species of Scleromys; subsequently made the type species of a separate genus Maquiamys.[187]

Sicista bilikeensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A birch mouse.

Sicista ertemteensis[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A birch mouse.

Sinozapus parvus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A jumping mouse.

Sonidomys[152]

Gen. et sp. nov

Valid

Qiu & Li

Neogene

 China

A cricetid rodent. Genus includes new species S. deligeri.

Spermophilinus mongolicus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A relative of the chipmunks.

Tachyoryctoides colossus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A muroid rodent belonging to the family Tachyoryctoididae.

Tachyoryctoides vulgatus[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

A muroid rodent belonging to the family Tachyoryctoididae.

Tamiops minor[152]

Sp. nov

Valid

Qiu & Li

Neogene

 China

An Asiatic striped squirrel.

Ucayalimys[158]

Gen. et sp. nov

Valid

Boivin et al.

Late Oligocene

Chambira Formation

 Peru

A caviomorph rodent, possibly a member of the superfamily Chinchilloidea. The type species is U. crassidens.

Ullumys[188]

Gen. et sp. et comb. nov

Valid

Olivares et al.

Miocene (Huayquerian)

Las Tapias Formation

 Argentina

A member of Echimyidae. Genus includes new species U. pattoni, as well as "Eumysops" intermedius Rovereto.

Primates[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Agerinia smithorum[189]

Sp. nov

Valid

Femenias-Gual et al.

Early Eocene

 Spain

Apidium zuetina[190]

Sp. nov

Valid

Beard et al.

Early Oligocene

 Libya

A species of Apidium.

Bahinia banyueae[191]

Sp. nov

Valid

Ni et al.

Early Oligocene

Caijiachong Formation

 China

A member of Eosimiidae, a species of Bahinia.

Canaanimico[192]

Gen. et sp. nov

Valid

Marivaux et al.

Late Oligocene

Chambira Formation

 Peru

A New World monkey related to Soriacebus. The type species is C. amazonensis.

Cantius lohseorum[193]

Sp. nov

Valid

Robinson

Early Eocene

Powder River Basin

 United States
( Wyoming)

A member of Notharctidae.

Gatanthropus[191]

Gen. et sp. nov

Valid

Ni et al.

Early Oligocene

Caijiachong Formation

 China

A relative of Ekgmowechashala. The type species is Gatanthropus micros.

Laomaki[191]

Gen. et sp. nov

Valid

Ni et al.

Early Oligocene

Caijiachong Formation

 China

A member of Adapiformes belonging to the family Sivaladapidae. The type species is Laomaki yunnanensis.

Megaceralemur[193]

Gen. et comb. et sp. nov

Valid

Robinson

Eocene

 United States
( Wyoming)

A member of Notharctidae. A new genus for "Pelycodus" trigonodus Matthew (1915); genus also includes new species M. matthewi.

Oligotarsius[191]

Gen. et sp. nov

Valid

Ni et al.

Early Oligocene

Caijiachong Formation

 China

A tarsier-like primate. The type species is Oligotarsius rarus.

Panamacebus[194]

Gen. et sp. nov

Valid

Bloch et al.

Early Miocene

Las Cascadas Formation

 Panama

A New World monkey, probably a member of Cebidae. The type species is Panamacebus transitus.

Pinolophus[193]

Gen. et sp. nov

Valid

Robinson

Eocene

 United States
( Wyoming)

A member of Notharctidae. The type species P. meikei.

Semnopithecus gwebinensis[195]

Sp. nov

Valid

Takai et al.

Late Pliocene

 Myanmar

A gray langur.

Yunnanadapis[191]

Gen. et 2 sp. nov

Valid

Ni et al.

Early Oligocene

Caijiachong Formation

 China

A member of Adapiformes belonging to the family Sivaladapidae. The type species is Yunnanadapis folivorus; genus also includes Yunnanadapis imperator.

Other eutherians[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Akhnatenavus nefertiticyon[196]

Sp. nov

Valid

Borths, Holroyd & Seiffert

Eocene (latest Priabonian)

Jebel Qatrani Formation

 Egypt

A hyainailourine hyaenodont.

Amphilagus tomidai[197]

Sp. nov

Valid

Erbajeva, Angelone & Alexeeva

Miocene

 Russia
( Irkutsk Oblast)

A lagomorph, a species of Amphilagus.

Antesorex wilsoni[173]

Sp. nov

Valid

Korth & Evander

Miocene (early Barstovian)

 United States
( Nebraska)

A shrew, a species of Antesorex.

Belgoryctes[198]

Gen. et sp. nov

Valid[199]

De Bast & Smith

Paleocene

Hainin Formation

 Belgium

A member of Palaeoryctidae. The type species is B. thaleri.

Brychotherium[196]

Gen. et sp. nov

Valid

Borths, Holroyd & Seiffert

Eocene (latest Priabonian)

Jebel Qatrani Formation

 Egypt

A teratodontine hyaenodont. The type species is B. ephalmos.

Cambaytherium gracilis[200]

Sp. nov

Valid

Smith et al.

Eocene (Ypresian)

Cambay Shale Formation

 India

A perissodactyl-like ungulate.

Cingulodon[198]

Gen. et sp. nov

Valid[199]

De Bast & Smith

Paleocene

Hainin Formation

 Belgium

An eutherian of uncertain phylogenetic placement, possibly a member of the family Louisinidae. The type species is C. magioncaldai.

Eoictops[179]

Gen. et sp. nov

Valid

Gunnell, Zonneveld & Bartels

Wasatchian

Wasatch Formation

 United States
( Wyoming)

A member of Leptictida belonging to the family Leptictidae. The type species is E. novaceki.

Eurolestes[198]

Gen. et sp. nov

Valid[199]

De Bast & Smith

Paleocene

Hainin Formation

 Belgium

A member of Pantolesta belonging to the family Pentacodontidae. The type species is E. dupuisi.

Gomphos progressus[201]

Sp. nov

Valid

Li, Wang & Fostowicz-Frelik

Eocene (Irdinmanhan)

Ulan Shireh Formation

 China

A member of Glires belonging to the family Mimotonidae.

Hegetotherium cerdasensis[202]

Sp. nov

Valid

Croft et al.

Miocene (Langhian)

Cerdas beds

 Bolivia

A notoungulate, a species of Hegetotherium.

Indoesthonyx[200]

Gen. et sp. nov

Valid

Smith et al.

Eocene (Ypresian)

Cambay Shale Formation

 India

A member of Tillodontia. The type species is I. suratensis.

Lanthanotherium observatum[173]

Sp. nov

Valid

Korth & Evander

Miocene (early Barstovian)

 United States
( Nebraska)

A member of Erinaceidae, a species of Lanthanotherium.

Mina[203][204]

Gen. et sp. nov

Valid

Li et al.

Middle Paleocene

Wanghudun Formation

 China

A basal member of Glires. The type species is Mina hui.

Ounalashkastylus[205]

Gen. et sp. nov

Valid

Chiba et al.

Miocene

 United States
( Alaska)

A desmostylian. The type species is Ounalashkastylus tomidai.

Palaeictops altimontis[206]

Sp. nov

Valid

Velazco & Novacek

Eocene (Uintan)

Tepee Trail Formation

 United States
( Wyoming)

A member of Leptictida belonging to the family Leptictidae.

Palaeictops robustus[206]

Sp. nov

Valid

Velazco & Novacek

Eocene (Uintan)

Uinta Formation

 United States
( Utah)

A member of Leptictida belonging to the family Leptictidae.

Palaeosinopa lacus[179]

Sp. nov

Valid

Gunnell, Zonneveld & Bartels

Wasatchian

Wasatch Formation

 United States
( Wyoming)

A member of Pantolestidae.

Pternoconius bondi[207]

Sp. nov

Valid

Cheme Arriaga, Dozo & Gelfo

Miocene (Colhuehuapian)

Sarmiento Formation

 Argentina

A member of Litopterna belonging to the family Macraucheniidae and the subfamily Cramaucheniinae.

Ptilocercus kylin[208]

Sp. nov

Valid

Li & Ni

Earliest Oligocene

Lijiawa Mammalian Fossil locality

 China

A treeshrew related to the pen-tailed treeshrew.

Purgatorius pinecreeensis[209]

Sp. nov

Valid

Scott, Fox & Redman

Paleocene (Puercan)

Ravenscrag Formation

 Canada
( Saskatchewan)

Quadratodon[198]

Gen. et sp. nov

Valid[199]

De Bast & Smith

Paleocene

Hainin Formation

 Belgium

An eutherian of uncertain phylogenetic placement, possibly a member of Erinaceomorpha. The type species is Q. sigei.

Rzebikia[210]

Gen. et comb. nov

Valid

Sansalone, Kotsakis & Piras

Pliocene to Pleistocene (Villanyian)

 Bulgaria
 Poland

A relative of the American shrew mole. A new genus for "Neurotrichus" polonicus Skoczeń (1980) and "Neurotrichus" skoczeni Zijlstra (2010).

Sanshuilophus[211]

Gen. et sp. nov

Valid

Mao et al.

Early Eocene

Huayong Formation

 China

A member of Phenacolophidae (a group of archaic ungulate mammals of uncertain phylogenetic placement). The type species is Sanshuilophus zhaoi.

Scalopoides hutchisoni[173]

Sp. nov

Valid

Korth & Evander

Miocene (early Barstovian)

 United States
( Nebraska)

A member of Talpidae, a species of Scalopoides.

Trachytherus ramirezi[212]

Sp. nov

Valid

Shockey, Billet & Salas-Gismondi

Oligocene (Deseadan)

Moquegua Formation

 Peru

A mesotheriid notoungulate, a species of Trachytherus.

Vassacyon prieuri[213]

Sp. nov

Valid

Solé et al.

Latest Paleocene

 France

A basal member of Carnivoraformes, a species of Vassacyon.

Zofialestes[214]

Gen. et sp. nov

Valid

Fostowicz-Frelik

Late Cretaceous (?late Campanian)

Barun Goyot Formation

 Mongolia

A relative of Zalambdalestes. The type species is Z. longidens.

Other mammals[edit]

Research[edit]

  • A study on the differences in cusp arrangement on the surface of molars of Morganucodon and Kuehneotherium and its impact on ability of the teeth to fracture prey is published by Conith et al. (2016).[215]
  • Description of a new specimen of Kollikodon ritchiei and a study of its phylogenetic relationships is published by Pian et al. (2016).[216]
  • A redescription of Teinolophos trusleri is published by Rich et al. (2016).[217]
  • A study comparing the skull anatomy of the extant platypus and the Miocene Obdurodon dicksoni is published by Asahara et al. (2016).[218]
  • A partial mandible of the amphitheriid Palaeoxonodon ooliticus, previously known only from isolated teeth, is described from the Middle Jurassic (late Bathonian) Kilmaluag Formation (Isle of Skye, Scotland, United Kingdom) by Close et al. (2016).[219]
  • A study on the morphological disparity, dietary trends and generic level taxonomic diversity patterns in early therians is published by Grossnickle & Newham (2016).[220]

New taxa[edit]

Name Novelty Status Authors Age Unit Location Notes Images

Anebodon[221]

Gen. et sp. nov

Valid

Bi et al.

Early Cretaceous

Yixian Formation

 China

A symmetrodont belonging to the family Zhangheotheriidae. The type species is A. luoi.

Cherwellia[222]

Gen. et sp. nov

Valid

Butler & Sigogneau-Russell

Middle Jurassic (late Bathonian)

 United Kingdom

A possible member of Morganucodonta. The type species is C. leei.

Culicolestes[223]

Gen. et sp. nov

Valid

Cifelli, Cohen & Davis

Late Cretaceous (Cenomanian)

Cedar Mountain Formation

 United States
( Utah)

A member of Tribosphenida of uncertain phylogenetic placement. The type species is C. kielanae.

Dakotadens pertritus[223]

Sp. nov

Valid

Cifelli, Cohen & Davis

Late Cretaceous (Cenomanian)

Cedar Mountain Formation

 United States
( Utah)

A member of Tribosphenida of uncertain phylogenetic placement.

Eotriconodon[222]

Gen. et sp. nov

Valid

Butler & Sigogneau-Russell

Middle Jurassic (late Bathonian)

 United Kingdom

A member of Triconodontidae. The type species is E. sophron.

Gobiconodon bathoniensis[222]

Sp. nov

Valid

Butler & Sigogneau-Russell

Middle Jurassic (late Bathonian)

 United Kingdom

Lactodens[224]

Gen. et sp. nov

Valid

Han & Meng

Early Cretaceous

 China

A ‘symmetrodont’ related to Spalacolestes. Genus includes new species L. sheni.

Mangasbaatar[225]

Gen. et sp. nov

Valid

Rougier et al.

Late Cretaceous (probably late Campanian)

 Mongolia

A djadochtatheriid multituberculate. The type species is M. udanii.

Morganucodon tardus[222]

Sp. nov

Valid

Butler & Sigogneau-Russell

Middle Jurassic (late Bathonian)

 United Kingdom

Phascolotherium simpsoni[222]

Sp. nov

Valid

Butler & Sigogneau-Russell

Middle Jurassic (late Bathonian)

 United Kingdom

A member of Eutriconodonta.

Stylidens[222]

Gen. et sp. nov

Valid

Butler & Sigogneau-Russell

Middle Jurassic (late Bathonian)

 United Kingdom

A possible member of Morganucodonta. The type species is S. hookeri.

Teutonodon[226]

Gen. et sp. nov

Valid

Martin et al.

Late Jurassic (Kimmeridgian)

 Germany

A plagiaulacid multituberculate. The type species is T. langenbergensis.

Theroteinus rosieriensis[227]

Sp. nov

Valid

Debuysschere

Late Triassic (Rhaetian)

 France

A member of Haramiyida belonging to the family Theroteinidae.

References[edit]

  1. ^ Gregory P. Wilson; Eric G. Ekdale; John W. Hoganson; Jonathan J. Calede; Abby Vander Linden (2016). "A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials". Nature Communications. 7: Article number 13734. Bibcode:2016NatCo...713734W. doi:10.1038/ncomms13734. PMC 5155139. PMID 27929063.
  2. ^ M. Archer; S. J. Hand; K. H. Black; et al. (2016). "A new family of bizarre durophagous carnivorous marsupials from Miocene deposits in the Riversleigh World Heritage Area, northwestern Queensland". Scientific Reports. 6: Article number 26911. Bibcode:2016NatSR...626911A. doi:10.1038/srep26911. PMC 4882580. PMID 27229325.
  3. ^ Borja Figueirido; Alberto Martín-Serra; Christine M. Janis (2016). "Ecomorphological determinations in the absence of living analogues: the predatory behavior of the marsupial lion (Thylacoleo carnifex) as revealed by elbow joint morphology". Paleobiology. 42 (3): 508–531. Bibcode:2016Pbio...42..508F. doi:10.1017/pab.2015.55. hdl:1983/1f3ac566-0b08-48fb-b27c-63fe4256c138. S2CID 87168573.
  4. ^ Samuel D. Arman; Gavin J. Prideaux (2016). "Behaviour of the Pleistocene marsupial lion deduced from claw marks in a southwestern Australian cave". Scientific Reports. 6: Article number 21372. Bibcode:2016NatSR...621372A. doi:10.1038/srep21372. PMC 4753435. PMID 26876952.
  5. ^ Frédérik Saltré; Marta Rodríguez-Rey; Barry W. Brook; Christopher N. Johnson; Chris S. M. Turney; John Alroy; Alan Cooper; Nicholas Beeton; Michael I. Bird; Damien A. Fordham; Richard Gillespie; Salvador Herrando-Pérez; Zenobia Jacobs; Gifford H. Miller; David Nogués-Bravo; Gavin J. Prideaux; Richard G. Roberts; Corey J. A. Bradshaw (2016). "Climate change not to blame for late Quaternary megafauna extinctions in Australia". Nature Communications. 7: Article number 10511. Bibcode:2016NatCo...710511S. doi:10.1038/ncomms10511. PMC 4740174. PMID 26821754.
  6. ^ Kenny J. Travouillon (2016). "Oldest fossil remains of the enigmatic pig-footed bandicoot show rapid herbivorous evolution". Royal Society Open Science. 3 (8): 160089. Bibcode:2016RSOS....360089T. doi:10.1098/rsos.160089. PMC 5108938. PMID 27853588.
  7. ^ Kenny J. Travouillon (2016). "Correction to 'Oldest fossil remains of the enigmatic pig-footed bandicoot show rapid herbivorous evolution'". Royal Society Open Science. 3 (11): 160778. Bibcode:2016RSOS....360778T. doi:10.1098/rsos.160778. PMC 5180164. PMID 28018666.
  8. ^ a b c Russell K. Engelman; Federico Anaya; Darin A. Croft (2016). "New palaeothentid marsupials (Paucituberculata) from the middle Miocene of Quebrada Honda, Bolivia, and their implications for the palaeoecology, decline and extinction of the Palaeothentoidea". Journal of Systematic Palaeontology. 15 (10): 787–820. doi:10.1080/14772019.2016.1240112. S2CID 88758358.
  9. ^ a b c http://zoobank.org/References/DA7E10BA-7203-4F5A-A3AB-F0E7352B101C [dead link]
  10. ^ Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2016). "Cookeroo, a new genus of fossil kangaroo (Marsupialia, Macropodidae) from the Oligo-Miocene of Riversleigh, northwestern Queensland, Australia". Journal of Vertebrate Paleontology. 36 (3): e1083029. Bibcode:2016JVPal..36E3029B. doi:10.1080/02724634.2016.1083029. S2CID 86923117.
  11. ^ Neville S. Pledge (2016). "New specimens of ektopodontids (Marsupialia: Ektopodontidae) from South Australia". Memoirs of Museum Victoria. 74: 173–187. doi:10.24199/j.mmv.2016.74.15.
  12. ^ a b Kenny J. Travouillon; Kaylene Butler; Michael Archer; Suzanne J. Hand (2016). "New material of Gumardee pascuali Flannery et al., 1983 (Marsupialia: Macropodiformes) and two new species from the Riversleigh World Heritage Area, Queensland, Australia". Memoirs of Museum Victoria. 74: 189–207. doi:10.24199/j.mmv.2016.74.16.
  13. ^ Xijun Ni; Qiang Li; Thomas A. Stidham; Lüzhou Li; Xiaoyu Lu; Jin Meng (2016). "A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction". Scientific Reports. 6: Article number 38547. Bibcode:2016NatSR...638547N. doi:10.1038/srep38547. PMC 5141426. PMID 27924847.
  14. ^ P.M. Chamberlain; K.J. Travouillon; M. Archer; S.J. Hand (2016). "Kutjamarcoot brevirostrum gen. et sp. nov., a new short-snouted, early Miocene bandicoot (Marsupialia: Peramelemorphia) from the Kutjamarpu Local Fauna (Wipajiri Formation) in South Australia". Alcheringa: An Australasian Journal of Palaeontology. 40 (2): 197–206. Bibcode:2016Alch...40..197C. doi:10.1080/03115518.2016.1103525. S2CID 87342707.
  15. ^ Benjamin P. Kear; Ken P. Aplin; Michael Westerman (2016). "Bandicoot fossils and DNA elucidate lineage antiquity amongst xeric-adapted Australasian marsupials". Scientific Reports. 6: Article number 37537. Bibcode:2016NatSR...637537K. doi:10.1038/srep37537. PMC 5121598. PMID 27881865.
  16. ^ Kenny J. Travouillon; Matthew J. Phillips (2018). "Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species". Zootaxa. 4378 (2): 224–256. doi:10.11646/zootaxa.4378.2.3. PMID 29690027.
  17. ^ Anna K. Gillespie; Michael Archer; Suzanne J. Hand (2016). "A tiny new marsupial lion (Marsupialia, Thylacoleonidae) from the early Miocene of Australia". Palaeontologia Electronica. 19 (2): Article number 19.2.26A. doi:10.26879/632.
  18. ^ Édison Vicente Oliveira; Natalia Zimicz; Francisco J. Goin (2016). "Taxonomy, affinities, and paleobiology of the tiny metatherian mammal Minusculodelphis, from the early Eocene of South America". The Science of Nature. 103 (1–2): 6. Bibcode:2016SciNa.103....6O. doi:10.1007/s00114-015-1331-2. PMID 26743194. S2CID 16588602.
  19. ^ Karen H. Black (2016). "Middle Miocene origins for tough-browse dietary specialisations in the koala (Marsupialia, Phascolarctidae) evolutionary tree: description of a new genus and species from the Riversleigh World Heritage Area". Memoirs of Museum Victoria. 74: 255–262. doi:10.24199/j.mmv.2016.74.19.
  20. ^ Michael Archer; Olivia Christmas; Suzanne J. Hand; et al. (2016). "Earliest known record of a hypercarnivorous dasyurid (Marsupialia), from newly discovered carbonates beyond the Riversleigh World Heritage Area, north Queensland". Memoirs of Museum Victoria. 74: 137–150. doi:10.24199/j.mmv.2016.74.13.
  21. ^ Thomas John Dixon Halliday; Paul Upchurch; Anjali Goswami (2016). "Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous–Palaeogene mass extinction". Proceedings of the Royal Society B: Biological Sciences. 283 (1833): 20153026. doi:10.1098/rspb.2015.3026. PMC 4936024. PMID 27358361.
  22. ^ Thomas John Dixon Halliday; Anjali Goswami (2016). "The impact of phylogenetic dating method on interpreting trait evolution: a case study of Cretaceous–Palaeogene eutherian body-size evolution". Biology Letters. 12 (8): 20160051. doi:10.1098/rsbl.2016.0051. PMC 5014015. PMID 27484642.
  23. ^ Susanne A. Fritz; Jussi T. Eronen; Jan Schnitzler; Christian Hof; Christine M. Janis; Andreas Mulch; Katrin Böhning-Gaese; Catherine H. Graham (2016). "Twenty-million-year relationship between mammalian diversity and primary productivity". Proceedings of the National Academy of Sciences of the United States of America. 113 (39): 10908–10913. Bibcode:2016PNAS..11310908F. doi:10.1073/pnas.1602145113. PMC 5047207. PMID 27621451.
  24. ^ Frédéric Delsuc; Gillian C. Gibb; Melanie Kuch; et al. (2016). "The phylogenetic affinities of the extinct glyptodonts". Current Biology. 26 (4): R155–R156. doi:10.1016/j.cub.2016.01.039. PMID 26906483. S2CID 9874777.
  25. ^ Kieren J. Mitchell; Agustin Scanferla; Esteban Soibelzon; Ricardo Bonini; Javier Ochoa; Alan Cooper (2016). "Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos". Molecular Ecology. 25 (14): 3499–3508. Bibcode:2016MolEc..25.3499M. doi:10.1111/mec.13695. hdl:11336/48521. PMID 27158910. S2CID 3720645.
  26. ^ Emmanuel Gheerbrant; Andrea Filippo; Arnaud Schmitt (2016). "Convergence of Afrotherian and Laurasiatherian Ungulate-Like Mammals: First Morphological Evidence from the Paleocene of Morocco". PLOS ONE. 11 (7): e0157556. Bibcode:2016PLoSO..1157556G. doi:10.1371/journal.pone.0157556. PMC 4934866. PMID 27384169.
  27. ^ Ozan Erdal; Pierre-Olivier Antoine; Sevket Sen (2016). "New material of Palaeoamasia kansui (Embrithopoda, Mammalia) from the Eocene of Turkey and a phylogenetic analysis of Embrithopoda at the species level" (PDF). Palaeontology. 59 (5): 631–655. Bibcode:2016Palgy..59..631E. doi:10.1111/pala.12247. S2CID 89418652.
  28. ^ Wighart von Koenigswald (2016). "The diversity of mastication patterns in Neogene and Quaternary proboscideans". Palaeontographica Abteilung A. 307 (1–6): 1–41. Bibcode:2016PalAA.307....1V. doi:10.1127/pala/307/2016/1.
  29. ^ J. Sakari Salonen; Juha Saarinen; Arto Miettinen; Heikki Hirvas; Marina Usoltseva; Mikael Fortelius; Marja Sorsa (2016). "The northernmost discovery of a Miocene proboscidean bone in Europe". Palaeogeography, Palaeoclimatology, Palaeoecology. 454: 202–211. Bibcode:2016PPP...454..202S. doi:10.1016/j.palaeo.2016.04.034. hdl:10138/237339.
  30. ^ Dimila Mothé; Marco P. Ferretti; Leonardo S. Avilla (2016). "The dance of tusks: rediscovery of lower incisors in the pan-American proboscidean Cuvieronius hyodon revises incisor evolution in Elephantimorpha". PLOS ONE. 11 (1): e0147009. Bibcode:2016PLoSO..1147009M. doi:10.1371/journal.pone.0147009. PMC 4710528. PMID 26756209.
  31. ^ Gina M. Semprebon; Deng Tao; Jelena Hasjanova; Nikos Solounias (2016). "An examination of the dietary habits of Platybelodon grangeri from the Linxia Basin of China: Evidence from dental microwear of molar teeth and tusks". Palaeogeography, Palaeoclimatology, Palaeoecology. 457: 109–116. Bibcode:2016PPP...457..109S. doi:10.1016/j.palaeo.2016.06.012.
  32. ^ Jacob Enk; Alison Devault; Christopher Widga; Jeffrey Saunders; Paul Szpak; John Southon; Jean-Marie Rouillard; Beth Shapiro; G. Brian Golding; Grant Zazula; Duane Froese; Daniel C. Fisher; Ross D. E. MacPhee; Hendrik Poinar (2016). "Mammuthus Population Dynamics in Late Pleistocene North America: Divergence, Phylogeography, and Introgression". Frontiers in Ecology and Evolution. 4: Article 42. doi:10.3389/fevo.2016.00042. S2CID 6779472.
  33. ^ Russell W. Graham; Soumaya Belmecheri; Kyungcheol Choy; Brendan J. Culleton; Lauren J. Davies; Duane Froese; Peter D. Heintzman; Carrie Hritz; Joshua D. Kapp; Lee A. Newsom; Ruth Rawcliffe; Émilie Saulnier-Talbot; Beth Shapiro; Yue Wang; John W. Williams; Matthew J. Wooller (2016). "Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska". Proceedings of the National Academy of Sciences of the United States of America. 113 (33): 9310–9314. Bibcode:2016PNAS..113.9310G. doi:10.1073/pnas.1604903113. PMC 4995940. PMID 27482085.
  34. ^ Laura A. B. Wilson; Suzanne J. Hand; Camilo López-Aguirre; Michael Archer; Karen H. Black; Robin M. D. Beck; Kyle N. Armstrong; Stephen Wroe (2016). "Cranial shape variation and phylogenetic relationships of extinct and extant Old World leaf-nosed bats". Alcheringa: An Australasian Journal of Palaeontology. 40 (4): 509–524. Bibcode:2016Alch...40..509W. doi:10.1080/03115518.2016.1196434. S2CID 59432964.
  35. ^ Analía M. Forasiepi; Ross D. E. MacPhee; Santiago Hernández del Pino; Gabriela I. Schmidt; Eli Amson; Camille Grohé (2016). "Exceptional skull of Huayqueriana (Mammalia, Litopterna, Macraucheniidae) from the late Miocene of Argentina: anatomy, systematics, and paleobiological implications" (PDF). Bulletin of the American Museum of Natural History. 404: 1–76. doi:10.1206/0003-0090-404.1.1. hdl:2246/6659. S2CID 89219979.
  36. ^ Christine Böhmer; Kurt Heissig; Gertrud E. Rössner (2016). "Dental eruption series and replacement pattern in Miocene Prosantorhinus (Rhinocerotidae) as revealed by macroscopy and X-ray: implications for ontogeny and mortality profile". Journal of Mammalian Evolution. 23 (3): 265–279. doi:10.1007/s10914-015-9313-x. S2CID 16204698.
  37. ^ Grant D. Zazula; Ross D. E. MacPhee; Elizabeth Hall; Susan Hewitson (2016). "Osteological assessment of Pleistocene Camelops hesternus (Camelidae, Camelinae, Camelini) from Alaska and Yukon". American Museum Novitates (3866): 1–45. doi:10.1206/3866.1. hdl:2246/6677. S2CID 59357054.
  38. ^ Haley D. O’Brien; J. Tyler Faith; Kirsten E. Jenkins; Daniel J. Peppe; Thomas W. Plummer; Zenobia L. Jacobs; Bo Li; Renaud Joannes-Boyau; Gilbert Price; Yue-xing Feng; Christian A. Tryon (2016). "Unexpected Convergent Evolution of Nasal Domes between Pleistocene Bovids and Cretaceous Hadrosaur Dinosaurs". Current Biology. 26 (4): 503–508. doi:10.1016/j.cub.2015.12.050. PMID 26853365. S2CID 47500337.
  39. ^ Peter D. Heintzman; Duane Froese; John W. Ives; André E. R. Soares; Grant D. Zazula; Brandon Letts; Thomas D. Andrews; Jonathan C. Driver; Elizabeth Hall; P. Gregory Hare; Christopher N. Jass; Glen MacKay; John R. Southon; Mathias Stiller; Robin Woywitka; Marc A. Suchard; Beth Shapiro (2016). "Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada". Proceedings of the National Academy of Sciences of the United States of America. 113 (29): 8057–8063. Bibcode:2016PNAS..113.8057H. doi:10.1073/pnas.1601077113. PMC 4961175. PMID 27274051.
  40. ^ Julien Soubrier; Graham Gower; Kefei Chen; Stephen M. Richards; Bastien Llamas; Kieren J. Mitchell; Simon Y. W. Ho; Pavel Kosintsev; Michael S. Y. Lee; Gennady Baryshnikov; Ruth Bollongino; Pere Bover; Joachim Burger; David Chivall; Evelyne Crégut-Bonnoure; Jared E. Decker; Vladimir B. Doronichev; Katerina Douka; Damien A. Fordham; Federica Fontana; Carole Fritz; Jan Glimmerveen; Liubov V. Golovanova; Colin Groves; Antonio Guerreschi; Wolfgang Haak; Tom Higham; Emilia Hofman-Kamińska; Alexander Immel; Marie-Anne Julien; Johannes Krause; Oleksandra Krotova; Frauke Langbein; Greger Larson; Adam Rohrlach; Amelie Scheu; Robert D. Schnabel; Jeremy F. Taylor; Małgorzata Tokarska; Gilles Tosello; Johannes van der Plicht; Ayla van Loenen; Jean-Denis Vigne; Oliver Wooley; Ludovic Orlando; Rafał Kowalczyk; Beth Shapiro; Alan Cooper (2016). "Early cave art and ancient DNA record the origin of European bison". Nature Communications. 7: Article number 13158. Bibcode:2016NatCo...713158S. doi:10.1038/ncomms13158. PMC 5071849. PMID 27754477.
  41. ^ Diyendo Massilani; Silvia Guimaraes; Jean-Philip Brugal; E. Andrew Bennett; Małgorzata Tokarska; Rose-Marie Arbogast; Gennady Baryshnikov; Gennady Boeskorov; Jean-Christophe Castel; Sergey Davydov; Stéphane Madelaine; Olivier Putelat; Natalia N. Spasskaya; Hans-Peter Uerpmann; Thierry Grange; Eva-Maria Geigl (2016). "Past climate changes, population dynamics and the origin of Bison in Europe". BMC Biology. 14 (1): 93. doi:10.1186/s12915-016-0317-7. PMC 5075162. PMID 27769298.
  42. ^ Daniel DeMiguel (2016). "Disentangling adaptive evolutionary radiations and the role of diet in promoting diversification on islands". Scientific Reports. 6: Article number 29803. Bibcode:2016NatSR...629803D. doi:10.1038/srep29803. PMC 4942836. PMID 27405690.
  43. ^ Christopher Basu; Peter L. Falkingham; John R. Hutchinson (2016). "The extinct, giant giraffid Sivatherium giganteum: skeletal reconstruction and body mass estimation". Biology Letters. 12 (1): 20150940. doi:10.1098/rsbl.2015.0940. PMC 4785933. PMID 26763212.
  44. ^ Konami Ando; Shin-ichi Fujiwara (2016). "Farewell to life on land – thoracic strength as a new indicator to determine paleoecology in secondary aquatic mammals". Journal of Anatomy. 229 (6): 768–777. doi:10.1111/joa.12518. PMC 5108153. PMID 27396988.
  45. ^ Robert W. Boessenecker; Erum Ahmed; Jonathan H. Geisler (2017). "New records of the dolphin Albertocetus meffordorum (Odontoceti: Xenorophidae) from the lower Oligocene of South Carolina: Encephalization, sensory anatomy, postcranial morphology, and ontogeny of early odontocetes". PLOS ONE. 12 (11): e0186476. Bibcode:2017PLoSO..1286476B. doi:10.1371/journal.pone.0186476. PMC 5695589. PMID 29117197.
  46. ^ Travis Park; Erich M. G. Fitzgerald; Alistair R. Evans (2016). "Ultrasonic hearing and echolocation in the earliest toothed whales". Biology Letters. 12 (4): 20160060. doi:10.1098/rsbl.2016.0060. PMC 4881348. PMID 27072406.
  47. ^ Y. Tanaka; R.E. Fordyce (2016). "Papahu-like fossil dolphin from Kaikōura, New Zealand, helps to fill the Early Miocene gap in the history of Odontoceti". New Zealand Journal of Geology and Geophysics. 59 (4): 551–567. Bibcode:2016NZJGG..59..551T. doi:10.1080/00288306.2016.1211540. S2CID 88953395.
  48. ^ Yoshihiro Tanaka; Hiroto Ichishima (2016). "A new skull of the fossil porpoise Numataphocoena yamashitai (Cetacea: Phocoenidae) from the upper part of the Horokaoshirarika Formation (lower Pliocene), Numata Town, Hokkaido, Japan, and its phylogenetic position". Palaeontologia Electronica. 19 (3): Article number 19.3.49A. doi:10.26879/663. hdl:2115/63928.
  49. ^ Felix G. Marx; David P. Hocking; Travis Park; Tim Ziegler; Alistair R. Evans; Erich M.G. Fitzgerald (2016). "Suction feeding preceded filtering in baleen whale evolution" (PDF). Memoirs of Museum Victoria. 75: 71–82. doi:10.24199/j.mmv.2016.75.04. Archived from the original (PDF) on 2017-02-09. Retrieved 2017-05-03.
  50. ^ Cheng-Hsiu Tsai; Naoki Kohno (2016). "Multiple origins of gigantism in stem baleen whales". The Science of Nature. 103 (11–12): 89. Bibcode:2016SciNa.103...89T. doi:10.1007/s00114-016-1417-5. PMID 27717969. S2CID 6000300.
  51. ^ Felix G. Marx; R. Ewan Fordyce (2016). "A Link No Longer Missing: New Evidence for the Cetotheriid Affinities of Caperea". PLOS ONE. 11 (10): e0164059. Bibcode:2016PLoSO..1164059M. doi:10.1371/journal.pone.0164059. PMC 5053404. PMID 27711216.
  52. ^